Denatured collagen is a key biomarker for various critical diseases such as cancer. Peptide probes with the repetitive (Gly-Pro-Hyp)n sequences have recently been found to selectively target denatured collagen; however, thermal or UV pretreatment is required to drive the peptides into the monomer conformation, which poses a substantial challenge for clinical applications. We herein construct two peptide probes, FAM-GOO and FAM-GPP, consisting of the repetitive (Gly-Hyp-Hyp)8 and (Gly-Pro-Pro)8 sequences, respectively. The CD, fluorescence and colorimetric studies have consistently revealed that FAM-GOO showed strong capability of forming the triple helical structure, while FAM-GPP pronouncedly displayed the single stranded conformation at temperatures as low as 4 °C. The binding experiments have indicated that both peptide probes could recognize denatured collagen with high specificity, and FAM-GPP remarkably did not need the preheating treatment. The tissue staining results have shown that preheated FAM-GOO and unheated FAM-GPP could target denatured collagen in a wide variety of rat frozen and human FFPE tissue sections. Compared with antibodies specific for a certain type of collagen, both FAM-GOO and FAM-GPP act as broad-spectrum probes for the selective detection of denatured collagen of different types and from different species. Importantly, FAM-GPP possessed the unique capability of maintaining the monomer conformation by itself, thus avoiding the potential risks of the thermal or UV pretreatment. This novel peptide probe provides a handy and versatile biosensor for specifically targeting denatured collagen, which has attractive potential in the diagnosis and therapeutics of collagen-involved diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0tb01691h | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China. Electronic address:
This study aimed to investigate the structural characteristics of Stichopus horrens collagen (SHC), Holothuria scabra collagen (HSC), and Holothuria leucospilota collagen (HLC) and to assess the effect of transglutaminase (TGase) on their film-forming properties. The results indicated that the collagens from three species of sea cucumbers were type I collagen with a complete triple helical structure. The thermal denaturation temperature of HLC (34.
View Article and Find Full Text PDFClin Implant Dent Relat Res
December 2024
Department of Periodontology, University of Bern, Bern, Switzerland.
Introduction: Platelet-rich fibrin (PRF) is being increasingly utilized in surgical procedures due to various improvements in clinical outcomes. More recently, a heating process to denature albumin in the platelet poor plasma (PPP) layer has been shown to extend the resorption time of PRF from a typical 2-week period to 4-6 months. Because of its > 4 month resorption properties, extended PRF (e-PRF) membranes have been used in dentistry as an alternative to collagen membranes in alveolar ridge preservations, ridge augmentations, soft tissue grafting, and as a barrier membrane in lateral sinus grafting procedures.
View Article and Find Full Text PDFActa Histochem
December 2024
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, Shandong 264005, China. Electronic address:
Despite of decades of efforts, novel approaches are still limited to attenuate or prevent skin scarring. A previous report published in Science demonstrated that inhibition of YAP promotes scarless wound repair by regeneration. Due to the difficult drugability of targeting YAP, we speculated that inhibition of TEAD, a partner molecule of YAP, might exist similar therapeutic potential.
View Article and Find Full Text PDFHeliyon
November 2024
Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China.
Int J Biol Macromol
December 2024
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!