Quasi-static tensile experiments were performed for a model disordered solid consisting of a two-dimensional raft of polydisperse floating granular particles with capillary attractions. The ductility is tuned by controlling the capillary interaction range, which varies with the particle size. During the tensile tests, after an initial period of elastic deformation, strain localization occurs and leads to the formation of a shear band at which the pillar later fails. In this process, small particles with long-ranged interactions can endure large plastic deformation without forming significant voids, while large particles with short-range interactions fail dramatically by fracturing at small deformation. Particle-level structure was measured, and the strain-localized region was found to have higher structural anisotropy than the bulk. Local interactions between anisotropic sites and particle rearrangements were the main mechanisms driving strain localization and the subsequent failure, and significant differences of such interactions exist between ductile and brittle behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm00839gDOI Listing

Publication Analysis

Top Keywords

strain localization
12
localization failure
4
failure disordered
4
disordered particle
4
particle rafts
4
rafts tunable
4
tunable ductility
4
ductility tensile
4
deformation
4
tensile deformation
4

Similar Publications

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Immobilization of Peniophora incarnata F1 in PVA-SA-biochar matrix and its degradation performance and mechanism for erythromycin degradation.

J Environ Manage

January 2025

Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China. Electronic address:

Erythromycin is becoming one of the most common contaminants detected in surface water and wastewater, which poses a potential risk to ecological systems and human health. Until now, there is still no effective way to eliminate it. Herein, a novel and efficient erythromycin-degrading fungus Peniophora incarnata F1, capable of utilizing erythromycin as its sole source of carbon and energy, was isolated from contaminated sludge.

View Article and Find Full Text PDF

Inovirus-Encoded Peptides Induce Specific Toxicity in .

Viruses

January 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

is a common opportunistic pathogen associated with nosocomial infections. The primary treatment for infections typically involves antibiotics, which can lead to the emergence of multidrug-resistant strains. Therefore, there is a pressing need for safe and effective alternative methods.

View Article and Find Full Text PDF

Background: Marek's disease (MD) is a pathology affecting chickens caused by Marek's disease virus (MDV), an acute transforming alphaherpesvirus of the genus . MD is characterized by paralysis, immune suppression, and the rapid formation of T-cell (primarily CD4+) lymphomas. Over the last 50 years, losses due to MDV infection have been controlled worldwide through vaccination; however, these live-attenuated vaccines are non-sterilizing and potentially contributed to the virulence evolution of MDV field strains.

View Article and Find Full Text PDF

Background: A broad-spectrum anti-SARS-CoV-2 monoclonal antibody (mAb), SA55, is highly effective against SARS-CoV-2 variants. This trial aimed at demonstrating the safety, tolerability, local drug retention and neutralizing activity, systemic exposure level, and immunogenicity of the SA55 nasal spray in healthy individuals.

Methods: This phase I, dose-escalation clinical trial combined an open-label design with a randomized, controlled, double-blind design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!