Electrical cell-to-cell communication using aggregates of model cells.

Phys Chem Chem Phys

Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.

Published: September 2020

Cell-to-cell communication via a local current caused by ion transport is elucidated using a model-cell system. To imitate tissues such as smooth muscles and cardiac muscles, liquid-membrane cells mimicking the function of K+ and Na+ channels were made. Connecting these channel-mimicking cells (K+ channel and voltage-gated Na+ channel) in parallel, model cells imitating living cell functions were constructed. Action-potential propagation within the cell aggregate model constructed by multiple model cells was investigated. When an action potential was generated at one cell, the cell behaved as an electric power source. Since a circulating current flowed around the cell, it flowed through neighboring model cells. Influx and efflux currents caused negative and positive shifts of the membrane potential, respectively, on the surface of neighboring model cells. The action potential was generated at the depolarized domain when the membrane potential exceeded the threshold of the voltage-gated Na+ channels. Thus, the action potential spread all over the cell system. When an external electric stimulus was applied to the layered cell-aggregate model system, propagation of the action potential was facilitated as if they were synchronized.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp06777aDOI Listing

Publication Analysis

Top Keywords

model cells
20
action potential
16
cell-to-cell communication
8
na+ channels
8
voltage-gated na+
8
potential generated
8
neighboring model
8
membrane potential
8
model
7
cells
7

Similar Publications

Mutations in the human genes encoding the endothelin ligand-receptor pair and cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific mutation plus related genetic resources.

View Article and Find Full Text PDF

The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart.

View Article and Find Full Text PDF

The cellular and molecular mechanisms underlying lymphocyte development are diverse among teleost species. Although recent scRNA-seq analyses of zebrafish hematopoietic cells have advanced our understanding of teleost hematopoiesis, comparative studies using another genetic model, medaka, which is evolutionarily distant among teleosts, is useful for understanding commonality and species-specificity in teleosts. In order to gain insight into how different molecular and cellular mechanisms of lymphocyte development in medaka and zebrafish, we established a () mutant medaka, which exhibited defects in V(D)J rearrangement of lymphocyte antigen receptor genes, accordingly lacking mature B and T cells.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer, and despite low incidence rates, it remains the sixth leading cause of cancer related deaths worldwide. Immunotherapy, which aims to enhance the immune system's ability to recognize and eliminate cancer cells, has emerged as a promising approach in the battle against PDAC. PARP7, a mono-ADP-ribosyltransferase, is a negative regulator of the type I interferon (IFN-I) pathway and has been reported to reduce anti-tumour immunity.

View Article and Find Full Text PDF

Introduction: Recurrent uveitis (RU), an autoimmune disease, is a leading cause of ocular detriment in humans and horses. Equine and human RU share many similarities including spontaneous disease and aberrant cytokine signaling. Reduced levels of SOCS1, a critical regulator of cytokine signaling, is associated with several autoimmune diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!