Melatonin attenuates chemical-induced cardiotoxicity.

Hum Exp Toxicol

Department of Pharmacodynamics and Toxicology, School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.

Published: March 2021

Environmental chemicals and drugs can induce cardiotoxicity, mainly by generating free radicals. Reactive oxygen species play a critical role in the pathogenesis of cardiac tissue injury. This highlights a need for prevention of cardiotoxicity by scavenging free radicals. Melatonin has been shown to act as a protector against various conditions in which free radicals cause molecular and tissue injury. Some of the mechanisms by which melatonin operates as a free radical scavenger and antioxidant have been identified. The importance of endogenous melatonin in cardiovascular health and the benefits of melatonin supplementation in different cardiac pathophysiological disorders have been shown in a variety of model systems. Melatonin continues to attract attention for its potential therapeutic value for cardiovascular toxicity. The therapeutic potential of melatonin in treatment of cardiotoxicities caused by various chemicals along with suggested molecular mechanisms of action for melatonin is reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0960327120959417DOI Listing

Publication Analysis

Top Keywords

free radicals
12
melatonin
8
tissue injury
8
melatonin attenuates
4
attenuates chemical-induced
4
chemical-induced cardiotoxicity
4
cardiotoxicity environmental
4
environmental chemicals
4
chemicals drugs
4
drugs induce
4

Similar Publications

Several interventional strategies have been implemented in malaria endemic areas where the burden is high, that include among others, intermittent preventive treatment (IPT), a tactic that blocks transmission and can reduce disease morbidity. However, the implementation IPT strategies raises a genuine concern, intervening the development of naturally acquired immunity to malaria which requires continuous contact with parasite antigens. This study investigated whether dihydroartemisinin-piperaquine (DP) or artesunate-amodiaquine (ASAQ) IPT in schoolchildren (IPTsc) impairs IgG reactivity to six malaria antigens.

View Article and Find Full Text PDF

In this paper, we present a new computational framework for the simulation of airway resistance, the fraction of exhaled nitric oxide, and the diffusion capacity for nitric oxide in healthy and unhealthy lungs. Our approach is firstly based on a realistic representation of the geometry of healthy lungs as a function of body mass, which compares well with data from the literature, particularly in terms of lung volume and alveolar surface area. The original way in which this geometry is created, including an individual definition of the airways in the first seven generations of the lungs, makes it possible to consider the heterogeneous nature of the lungs in terms of perfusion and ventilation.

View Article and Find Full Text PDF

Oxygen Activation Biocatalytic Precipitation Strategy Based on a Bimetallic Single-Atom Catalyst for Photoelectrochemical Biosensing.

Anal Chem

January 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

Article Synopsis
  • The traditional biocatalytic precipitation (BCP) method has limitations due to HO's tendency to self-decompose, affecting its effectiveness in quantitative analysis.
  • Researchers discovered that a bimetallic single-atom catalyst (Co/Zn-N-C SAC) can activate dissolved oxygen to create reactive oxygen species, leading to improved detection methods.
  • The development of a new oxygen-activated photoelectrochemical (PEC) biosensor for chloramphenicol (CAP) detection demonstrates enhanced stability and accuracy by using Co/Zn-N-C SAC and cesium platinum bromide nanocrystals (CsPtBr NCs) without needing external reactants.
View Article and Find Full Text PDF

Hydrogen atom transfer (HAT) reactions and their kinetic barriers Δ are important in organic and inorganic chemistry. This study examines factors that influence Δ, reporting the kinetics and thermodynamics of HAT from various ruthenium bis(acetylacetonate) pyridine-imidazole complexes to nitroxyl radicals. Across these 36 reactions, the Δ and Δ can be independently varied, with different sets of Ru complexes primarily tuning either their ps or their °s.

View Article and Find Full Text PDF

Context: The rotating arc plasma technique for the synthesis of nitrogen-doped graphene capitalizes on the distinctive attributes of plasma, presenting a straightforward, efficient, and catalyst-free strategy for the production of nitrogen-doped graphene. However, experimental outcomes generally fail to elucidate the atomic-level mechanism behind this process. Our research utilizes molecular dynamics simulations to explore theoretically the formation of radicals during the plasma-driven reaction between methane (CH₄) and nitrogen (N₂).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!