Download full-text PDF

Source

Publication Analysis

Top Keywords

prevention exercise-induced
4
exercise-induced hypoglycaemia
4
hypoglycaemia type
4
type insulin-dependent
4
insulin-dependent diabetic
4
diabetic patients
4
patients conventional
4
conventional intensified
4
intensified insulin
4
insulin therapy
4

Similar Publications

The Application of Olive-Derived Polyphenols on Exercise-Induced Inflammation: A Scoping Review.

Nutrients

January 2025

Cambridge Centre for Sport and Exercise Sciences (CCSES), Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK.

Background/objectives: There is current scientific interest pertaining to the therapeutic effects of olive-derived polyphenols (ODPs), in particular their associated anti-inflammatory properties, following the wealth of research surrounding the physiological impact of the Mediterranean Diet (MD). Despite this association, the majority of the current literature investigates ODPs in conjunction with metabolic diseases. There is limited research focusing on ODPs and acute inflammation following exercise, regardless of the knowledge surrounding the elevated inflammatory response during this time.

View Article and Find Full Text PDF

Aims: This study was designed to compare the effectiveness of a single subcutaneous (s.c.) glucagon dose versus the same total dose split into a dose before and after and placebo (PBO) in preventing exercise-induced hypoglycaemia in adults with type 1 diabetes (T1D).

View Article and Find Full Text PDF

Cancer is caused by complex interactions between genetic, environmental, and lifestyle factors, making prevention strategies, including exercise, a promising avenue for intervention. Physical activity is associated with reduced cancer incidence and progression and systemic anti-cancer effects, including improved tumor suppression and prolonged survival in preclinical models. Exercise impacts the body's nutrient balance and stimulates the release of several exercise-induced factors into circulation.

View Article and Find Full Text PDF

This review investigates the intricate relationship between exercise, brain-derived neurotrophic factor (BDNF), neuroplasticity, and cognitive function, with a focus on implications for neuropsychiatric and neurodegenerative disorders. A systematic review was conducted by searching various databases for relevant studies that explored the connections between exercise, BDNF, neuroplasticity, and cognitive health. The analysis of eligible studies revealed that exercise increases BDNF levels in the brain, promoting neuroplasticity and enhancing cognitive functions.

View Article and Find Full Text PDF

Reduced PI3K(p110α) induces atrial myopathy, and PI3K-related lipids are dysregulated in athletes with atrial fibrillation.

J Sport Health Sci

January 2025

Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, Victoria 3086, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton, Victoria 3800, Australia; Heart Research Institute, Newtown, New South Wales 2042, Australia. Electronic address:

Background: Elucidating mechanisms underlying atrial myopathy, which predisposes individuals to atrial fibrillation (AF), will be critical for preventing/treating AF. In a serendipitous discovery, we identified atrial enlargement, fibrosis, and thrombi in mice with reduced phosphoinositide 3-kinase (PI3K) in cardiomyocytes. PI3K(p110α) is elevated in the heart with exercise and is critical for exercise-induced ventricular enlargement and protection, but the role in the atria was unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!