AI Article Synopsis

Article Abstract

Protein tyrosine phosphatase receptor type A (PTPRA), one of the classic protein tyrosine phosphatases, is crucial for modulating tumorigenesis and metastasis in breast cancer; however, its functional mechanism has not fully elucidated. The present study assessed PTPRA expression and estimated its clinical impact on survival using the Gene Expression Profiling Interactive Analysis database (GEPIA). Growth curves, colony formations and Transwell assays were utilized to examine cell proliferation and migration. Additionally, luciferase reporter assays were used to examine the potential tumor signaling pathways targeted by PTPRA in HEK293T cells. Furthermore, quantitative PCR (qPCR) was utilized to confirm the transcriptional regulation of PTPRA expression. Bioinformatic analyses of data from GEPIA identified PTPRA overexpression in patients with breast cancer. The growth curve, colony formation and transwell experiments demonstrated that PTPRA upregulation significantly promoted the cell proliferation and migration of MCF-7 breast cancer cells. In contrast, PTPRA knockdown significantly attenuated cell proliferation and migration. Mechanistic experiments revealed that the transcriptional activity of NF-κB was higher compared with other classic tumor pathways when they were activated by PTPRA in HEK293T cells. Furthermore, the transcriptional activity of NF-κB was altered in a PTPRA-dose-dependent manner. Additionally, following exposure to TNF-α, PTPRA-deficient MCF-7 cells exhibited lower NF-κB transcriptional activity compared with normal control cells. The results of the present study demonstrate that PTPRA overexpression accelerates inflammatory tumor phenotypes in breast cancer and that the TNF-α-mediated PTPRA-NF-κB pathway may offer novel insight into early diagnosis and optimum treatment for breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471670PMC
http://dx.doi.org/10.3892/ol.2020.11992DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
cell proliferation
12
proliferation migration
12
transcriptional activity
12
ptpra
10
cancer growth
8
tnf-α-mediated ptpra-nf-κb
8
ptpra-nf-κb pathway
8
mcf-7 breast
8
cancer cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!