Removal of inorganic arsenic from water using metal organic frameworks.

J Environ Sci (China)

Department of Chemistry, University of Alberta, Alberta T6G 2G3, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3,Canada. Electronic address:

Published: November 2020

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2020.08.012DOI Listing

Publication Analysis

Top Keywords

removal inorganic
4
inorganic arsenic
4
arsenic water
4
water metal
4
metal organic
4
organic frameworks
4
removal
1
arsenic
1
water
1
metal
1

Similar Publications

Achieving Near Infrared Photodegradation by the Synergistic Effect of Z-Scheme Heterojunction and Antenna of Rare Earth Single Atoms.

Small

January 2025

Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.

Near-infrared light response catalysts have received great attention in renewable solar energy conversion, energy production, and environmental purification. Here, near-infrared photodegradation is successfully achieved in rare earth single atom anchored NaYF@g-CN heterojunctions by the synergistic effect of Z-scheme heterojunction and antenna of rare earth single atoms. The UV-vis light emitted by Tm can not only be directly absorbed by g-CN to generate electron-hole pairs, realizing efficient energy transfer, but also be absorbed by NaYF substrate, and generating photo-generated electrons at its impurity level, transferring the active charge to the valence band of g-CN, forming a Z-scheme heterojunction and further improving the photocatalytic efficiency.

View Article and Find Full Text PDF

The contamination of water systems by antibiotics such as ciprofloxacin (CIP), which is used to treat bacterial infections, poses severe risks to environmental safety and public health. To address this issue, a novel zwitterionic polymeric nanocomposite (PNs-HTC) was developed in this study. This novel material was synthesized using alkylated chitosan ionic macromonomers, ionic monomers and combined with hydrotalcite (HTC) via in situ free radical polymerization.

View Article and Find Full Text PDF

Thiocyanate (SCN) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN in mixotrophic denitrification under high C/N and low C/N conditions.

View Article and Find Full Text PDF

Conductive materials enhance anaerobic membrane bioreactor (AnMBR) treating waste leachate at high organic loading rates.

J Environ Manage

January 2025

College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, China. Electronic address:

The treatment of landfill leachate using anaerobic membrane bioreactors (AnMBRs) often faces challenges such as poor removal efficiency, low methane yield and membrane fouling. This study applied AnMBRs with incrementally adding conductive materials to enhance the treatment of landfill leachate under high organic loading rates(35 kg COD/(m∙d)). With 50 g/L activated carbon, COD removal percentages and methane yield increased to 81.

View Article and Find Full Text PDF

To address cadmium pollution in China's cultivated land, chitosan, inorganic and organic selenium were used to modify rice husk charcoal for cadmium inhibition. Basic physicochemical properties of rice husk carbons were characterized (BET, FTIR, XRD, Zeta potential). Kinetic and isothermal adsorption experiments studied the adsorption of Cd by modified biochar under different pH and dosages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!