Ex-situ modification of bacterial cellulose for immediate and sustained drug release with insights into release mechanism.

Carbohydr Polym

Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, NH9, Kandi Village, Sangareddy District, Telangana, 502285, India. Electronic address:

Published: December 2020

The release of drug from bacterial cellulose (BC) is tuned to achieve immediate and controlled delivery by using two drying strategies: freeze-drying and oven-drying. Diclofenac sodium (DCF), a hydrophilic drug, was used as the model drug and was loaded in oven-dried BC (BC-OD-DCF) and freeze-dried BC (BC-FD-DCF) to obtain sustained release and burst release, respectively. BC dried by the two methods were characterized and found to possess different structures and morphologies. The crystallinity was found to be higher for BC-OD (86 % for BC-OD and 79 % for BC-FD) while BC-FD offered higher porosity (92 % for BC-FD and 75 % for BC-OD), higher specific surface area (85 m/g for BC-FD and 35 m/g for BC-OD) and pore size, which altogether affects the matrix swellability, drug loading and release behaviour. The mathematical modelling of drug release kinetics supports diffusion-driven first-order release from BC-FD-DCF whereas release from BC-OD-DCF shows a super case II transport, where the buffer front travels slowly into the denser oven-dried matrix leading to a controlled release of the drug. The correlation between swelling and cumulative drug release is also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.116816DOI Listing

Publication Analysis

Top Keywords

drug release
12
release
11
bacterial cellulose
8
drug
8
release drug
8
ex-situ modification
4
modification bacterial
4
cellulose sustained
4
sustained drug
4
release insights
4

Similar Publications

Purpose: Tylvalosin Tartrate (TAT), a new-generation macrolide antibiotic, undergoes significant degradation in the stomach and in vivo rapid elimination upon oral administration, resulting in poor bioavailability. This study developed TAT enteric amorphous pellets by liquid layering (TAT/EAP-LL) with pH-sensitive and burst release characteristics, to enhance drug stability in the stomach and concentration enrichment in the duodenum.

Methods: The drug loading layer, isolation layer and enteric layer were formed on the surface of the blank core pellets.

View Article and Find Full Text PDF

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

The degree of cross-linking of polyacrylic acid affects the fibrogenicity in rat lungs.

Sci Rep

January 2025

Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.

Polyacrylic acid (PAA) with different concentrations of cross-linker was instilled into the trachea of rats to examine the effect of PAA crosslink density on lung disorders. Methods: F344 rats were intratracheally exposed to low and high doses of PAA with cross-linker concentrations of 0.1, 1.

View Article and Find Full Text PDF

Background: Polyclonal autologous T cells that are epigenetically reprogrammed through mTOR inhibition and IFN-α polarization (RAPA-201) represent a novel approach to the adoptive T cell therapy of cancer. Ex vivo inhibition of mTOR results causes a shift towards T central memory (T) whereas ex vivo IFN-α promotes type I cytokines, with each of these functions known to enhance the adoptive T cell therapy of cancer. Rapamycin-resistant T cells polarized for a type II cytokine phenotype were previously evaluated in the allogeneic transplantation context.

View Article and Find Full Text PDF

Microneedle-delivered adeno-associated virus vaccine amplified anti-viral immunity by improving antigen-presenting cells infection.

J Control Release

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. Electronic address:

Adeno-associated viruses (AAV) have significant potential as vaccine carriers due to their excellent biosafety and efficient antigen gene delivery. However, most AAV vaccines show limited capacity to transduce antigen-presenting cells (APCs) following intramuscular injection which may cause inadequate cellular immune responses and undesired side effects due to transducing other tissues or cells. Herein, we developed a soluble microneedle patch for targeting the AAV vaccines to the epidermal and dermal APCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!