Background: During the process of shearing the ligamentum flavum, rotating the working channel, and manipulating the annulus fibrosis, the sinuvertebral nerve and the spinal nerve root can be irritated, inducing intolerable back and leg pain. Thus, general anesthesia is recommended and well accepted by most surgeons when performing percutaneous endoscopic lumbar discectomy (PELD) via the interlaminar approach. The aim of our study was to explore the efficacy and safety of percutaneous endoscopy interlaminar lumbar discectomy with gradient local anesthesia (LA) in patients with L5/S1 disc herniation.

Methods: This retrospective study was conducted between December 2017 and June 2018. The study included 50 consecutive patients who met the study criteria, had single-level L5/S1 disc herniation, and underwent PELD via the interlaminar approach under gradient LA. Different concentrations of local anesthetic compound (LAC) were injected into different tissues inside and outside the ligamentum flavum to complete gradient LA. The evaluation criteria included the intraoperative satisfaction score, visual analog scale (VAS) score, Oswestry Disability Index (ODI), complications, and adverse reactions.

Results: The intraoperative satisfaction score was consistently over 7, with an average score of 9.3 ± 0.7, indicating that LAC can achieve satisfactory pain control throughout the PELD operation without additional anesthesia. The postoperative VAS score and ODI were dramatically improved at each follow-up interval (P < 0.001, respectively). There was no serious complication such as dural rupture caused by puncture, dural laceration caused by manipulation under endoscopy, total spinal anesthesia, iatrogenic nerve root injury, epidural hematoma, infections, or local anesthetic-related adverse reactions. Three patients experienced transient postoperative dysesthesia of the lower limbs that gradually recovered within 24 h.

Conclusions: Gradient local anesthesia can satisfactorily and safely control intraoperative pain during the PELD via the interlaminar approach. It can not only improve intraoperative satisfaction, but also reduce local anesthesia-related adverse reactions and surgery-related complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493882PMC
http://dx.doi.org/10.1186/s13018-020-01939-5DOI Listing

Publication Analysis

Top Keywords

gradient local
12
local anesthesia
12
peld interlaminar
12
interlaminar approach
12
intraoperative satisfaction
12
percutaneous endoscopic
8
ligamentum flavum
8
nerve root
8
lumbar discectomy
8
l5/s1 disc
8

Similar Publications

Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb.

View Article and Find Full Text PDF

The immense energy footprint of desalination and brine treatment is a barrier to a green economy. Interfacial evaporation (IE) offers a sustainable approach to water purification by efficient energy conversion. However, conventional evaporators are susceptible to fluctuations in solar radiation and the salinity of handling liquid.

View Article and Find Full Text PDF

Surgical techniques and prognostic nomogram for patients with supravalvular aortic stenosis.

Eur J Med Res

January 2025

Department of Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.

Background: An effective prognostic nomogram to predict the prognosis for supravalvular aortic stenosis (SVAS) patients is lacking.

Methods: A multi-center retrospective study of consecutive SVAS patients with surgery between 2002 and 2020 was conducted. Patients underwent McGoon repairs, Doty repairs, and other repairs.

View Article and Find Full Text PDF

Gradient experiment reveals physiological stress from heavy metal zinc on the economically valuable seaweed Sargassum fusiforme.

Mar Environ Res

January 2025

National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, 325035, Wenzhou, China. Electronic address:

Zn is a common heavy metal pollutant in water bodies and accounts for the largest proportion of heavy metal pollutants in many rivers entering the sea. This study investigated the growth and physiological response characteristics of Sargassum fusiforme under different divalent Zn ion concentration gradients. We observed that low concentration Zn treatment (<2 mg L) exerted no significant effect on the growth rate, photosynthesis, and nitrogen metabolism-related indicators of S.

View Article and Find Full Text PDF

ABA-auxin cascade regulates crop root angle in response to drought.

Curr Biol

January 2025

Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Enhancing drought resistance through the manipulation of root system architecture (RSA) in crops represents a crucial strategy for addressing food insecurity challenges. Abscisic acid (ABA) plays important roles in drought tolerance; yet, its molecular mechanisms in regulating RSA, especially in cereal crops, remain unclear. In this study, we report a new mechanism whereby ABA mediates local auxin biosynthesis to regulate root gravitropic response, thereby controlling the alteration of RSA in response to drought in cereal crops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!