Osteomyelitis: Focus on Conventional Treatments and Innovative Drug Delivery Systems.

Curr Drug Deliv

Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin, 10125, Italy.

Published: October 2021

Osteomyelitis is a bone marrow infection which generally involves cortical plates and which may occur after bone trauma, orthopedic/maxillofacial surgery or after vascular insufficiency episodes. It mostly affects people from the Third World Countries, the elderly and patients affected by systemic diseases e.g. autoimmune disorders, AIDS, osteoporosis and microvascular disease. The highest percentage of osteomyelitis cases (almost 75%) is caused by Staphylococcus spp., and in particular by Staphylococcus aureus (more than 50%). The ideal classification and the diagnosis of osteomyelitis are two important tools which help the physicians to choose the best therapeutic strategies. Currently, common therapies provide an extensive debridement in association with intravenous administration of antibiotics (penicillin or clindamycin, vancomycin and fluoroquinolones among all for resistant microorganisms), to avoid the formation of sequestra. However, conventional therapeutic approach involves several drawbacks like low concentration of antibiotics in the infected site, leading to resistance and adverse effects due to the intravenous administration. For these reasons, in the last years several studies have been focused on the development of drug delivery systems such as cements, beads, scaffolds and ceramics made of hydroxyapatite (HA), calcium phosphate (CaP) and β-tricalcium phosphate (β-TCP) which demonstrated to be biocompatible, poorly toxic and capable to allow osteointegration and a prolonged drug release. The aim of this review is to provide a focus on current therapies and latest developed drug delivery systems with particular attention on those based on CaP and its derivatives, hoping that this work could allow further direction in the field of osteomyelitis.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567201817666200915093224DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
delivery systems
12
intravenous administration
8
osteomyelitis
5
osteomyelitis focus
4
focus conventional
4
conventional treatments
4
treatments innovative
4
drug
4
innovative drug
4

Similar Publications

Mechanistic understanding of pH as a driving force in cancer therapeutics.

J Mater Chem B

January 2025

Department of Forensic Science, School for Bio Engineering and Bio Sciences, Lovely Professional University, Phagwara, Punjab, India.

The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity.

View Article and Find Full Text PDF

Preparation and characterization of tildipirosin-loaded solid lipid nanoparticles for the treatment of intracellular infections.

Biomater Sci

January 2025

School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.

To enhance the antibacterial efficacy of tildipirosin against (S.A.) infections, optimized solid lipid nanoparticles loaded with tildipirosin (SLN-TD) were developed, using docosanoic acid (DA), octadecanoic acid (OA), hexadecanoic acid (HA), and tetradecanoic acid (TA) as lipid components.

View Article and Find Full Text PDF

Aim: Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.

Method: A 3 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties.

View Article and Find Full Text PDF

Intracellular viscosity is a critical microenvironmental factor in various biological systems, and its abnormal increase is closely linked to the progression of many diseases. Therefore, precisely controlling the release of bioactive molecules in high-viscosity regions is vital for understanding disease mechanisms and advancing their diagnosis and treatment. However, viscosity alone cannot directly trigger chemical reactions.

View Article and Find Full Text PDF

Background: In response to the recent and growing shift from injecting heroin to smoking fentanyl, an increasing number of syringe services programs (SSPs) in the United States are distributing safer smoking supplies. There is a lack of research on whether safer smoking supply distribution is associated with increased SSP engagement and naloxone distribution from SSPs. Therefore, we aimed to assess predictors of safer smoking supply distribution by SSPs and estimate associations between safer smoking supply distribution and scale of harm reduction services.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!