Objective: This study aimed to investigate the morphometric differences in the corpus callosum between patients with major depressive disorder (MDD) and healthy controls and analyze their relationship to gray matter changes.
Methods: Twenty female MDD patients and 21 healthy controls (HCs) were included in the study. To identify the difference in the regional gray matter concentration (GMC), VBM was performed with T1 magnetic resonance imaging. The shape analysis of the corpus callosum was processed. Diffusion tensor imaging (DTI) fiber-tracking was performed to identify the regional tract pathways in the damaged corpus callosal areas.
Results: In the shape analysis, regional shape contractions in the rostrum and splenium were found in the MDD patients. VBM analysis showed a significantly lower white matter concentration in the genu and splenium, and a significantly lower GMC in the frontal, limbic, insular, and temporal regions of the MDD patients compared to the HCs. In DTI fiber-tracking, the fibers crossing the damaged areas of the genu, rostrum, and splenium were anatomically connected to the areas of lower GMC in MDD patients.
Conclusion: These findings support that major depressive disorder may be due to disturbances in multiple neuronal circuits, especially those associated with the corpus callosum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538242 | PMC |
http://dx.doi.org/10.30773/pi.2020.0157 | DOI Listing |
Med Biol Eng Comput
January 2025
Non-Invasive Imaging and Diagnostic Laboratory, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.
Detection of early mild cognitive impairment (EMCI) is clinically challenging as it involves subtle alterations in multiple brain sub-anatomic regions. Among different brain regions, the corpus callosum and lateral ventricles are primarily affected due to EMCI. In this study, an improved deep canonical correlation analysis (CCA) based framework is proposed to fuse magnetic resonance (MR) image features from lateral ventricular and corpus callosal structures for the detection of EMCI condition.
View Article and Find Full Text PDFCureus
December 2024
Neurology, Palmetto General Hospital, Hialeah, USA.
The corpus callosum can reveal a "butterfly" pattern on imaging in various conditions, including glioblastoma, primary central nervous system lymphoma, tumefactive multiple sclerosis, and toxoplasmosis. Early differentiation among these conditions is crucial to avoid aggressive treatments. In one case, a 70-year-old woman with a history of multiple sclerosis experienced a neurological decline.
View Article and Find Full Text PDFGM2 gangliosidosis is lysosomal storage disorder caused by deficiency of the heterodimeric enzyme β-hexosaminidase A. Tay-Sachs disease is caused by variants in encoding the α-subunit and Sandhoff disease is caused by variants in encoding the β-subunit. Due to shared clinical and biochemical findings, the two have been considered indistinguishable.
View Article and Find Full Text PDFNeuroscience
January 2025
Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA. Electronic address:
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!