Polymer foams are an important class of engineering material that are finding diverse applications, including as structural parts in automotive industry, insulation in construction, core materials for sandwich composites, and cushioning in mattresses. The vast majority of these manufactured foams are homogeneous with respect to porosity and structural properties. In contrast, while cellular materials are also ubiquitous in nature, nature mostly fabricates heterogeneous foams, e.g., cellulosic plant stems like bamboo, or a human femur bone. Foams with such engineered porosity distribution (graded density structure) have useful property gradients and are referred to as functionally graded foams. Functionally graded polymer foams are one of the key emerging innovations in polymer foam technology. They allow enhancement in properties such as energy absorption, more efficient use of material, and better design for specific applications, such as helmets and tissue restorative scaffolds. Here, following an overview of key processing parameters for polymer foams, we explore recent developments in processing functionally graded polymer foams and their emerging structures and properties. Processes can be as simple as utilizing different surface materials from which the foam forms, to as complex as using microfluidics. We also highlight principal challenges that need addressing in future research, the key one being development of viable generic processes that allow (complete) control and tailoring of porosity distribution on an application-by-application basis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560401 | PMC |
http://dx.doi.org/10.3390/ma13184060 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
Branched poly (butylene succinate-co-butylene terephthalate) (BPBST) was synthesized by in-situ polycondensation to enhance the foamability of poly (butylene succinate-co-butylene terephthalate) (PBST) and was blended with cellulose nanocrystals (CNC) to address foam shrinkage. The introduction of 2 wt% CNC increased the crystallization temperature of BPBST from 66.6 °C to 87.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.
In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand.
This study examined the feasibility of using natural rubber (NR) latex foam as a dye adsorbent and antibacterial foam. The dyes used in this experiment were Methylene Blue (MB) and Alizarin Yellow (AY). Foams with that optimum density were further evaluated for adsorption isotherm, kinetics, and thermodynamic data.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
Bead-foaming technology effectively addresses production cycles, polymerization control, and cellular structure defects in conventional bulk foaming, especially in high-performance PMI foams. In this work, highly expandable PMI beads were synthesized based on the aqueous suspension polymerization of methacrylic acid-methacrylonitrile-tert-butyl methacrylate (MAA-MAN-tBMA) copolymers. The suspension polymerization was stabilized by reducing the solubility of MAA by the salting-out effect and replacing formamide (a common PMI foaming agent) with tBMA.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
Conventional PP with a linear chain structure is not suitable for foam processing due to its poor rheological properties. In this study, PP was modified with PE through reactive melt blending of maleic anhydride-grafted PP (MA-PP) with a small amount of PE bearing glycidyl groups on its backbone (G-PE), with the aim of enhancing the melt rheological properties of PP to make it suitable for foam processing. An anhydride-epoxy reaction occurred between MA-PP and G-PE during the melt processing, resulting in the formation of a crosslinked polymer network, which was confirmed by FTIR spectroscopy, a solubility test, and the presence of a rubbery plateau above the melting point.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!