(PA) is a pathogen that is recognized for its advanced antibiotic resistance and its association with serious diseases such as ventilator-associated pneumonia and cystic fibrosis. The ability to rapidly detect the presence of pathogenic bacteria in patient samples is crucial for the immediate eradication of the infection. Pyocyanin is one of PA's virulence factors used to establish infections. Pyocyanin promotes virulence by interfering in numerous cellular functions in host cells due to its redox-activity. Fortunately, the redox-active nature of pyocyanin makes it ideal for detection with simple electrochemical techniques without sample pretreatment or sensor functionalization. The previous decade has seen an increased interest in the electrochemical detection of pyocyanin either as an indicator of the presence of PA in samples or as a tool for quantifying PA virulence. This review provides the first overview of the advances in electrochemical detection of pyocyanin and offers an input regarding the future directions in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570525 | PMC |
http://dx.doi.org/10.3390/s20185218 | DOI Listing |
J Am Chem Soc
January 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.
The electrochemical CO reduction reaction (CORR) holds enormous potential as a carbon-neutral route to the sustainable production of fuels and platform chemicals. The durability for long-term operation is currently inadequate for commercialization, however, and the underlying deactivation process remains elusive. A fundamental understanding of the degradation mechanism of electrocatalysts, which can dictate the overall device performance, is needed.
View Article and Find Full Text PDFNano Lett
January 2025
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
Accurate and reliable quantification of disease-related biomolecules is essential for clinical diagnosis. In this study, a novel electrochemical approach is developed based on a target triggered DNA nanostructural switch from a hairpin dimer to a double-stranded wheel. During the process, electrochemical species get closer to the electrode interface, and the multiple intramolecular strand displacements are beneficial to low abundant target analysis.
View Article and Find Full Text PDFAnal Biochem
January 2025
Jianhu Clinical Medical College of Yangzhou University, Jianhu, Jiangsu, China, 224700. Electronic address:
In this study, we emphasize the importance of identifying Let-7a, a microRNA that is key in diagnosing and predicting lung cancer outcomes. Let-7a's function as a biomarker is essential, as it affects tumor suppression and controls cell differentiation and growth. We developed a novel device, an electrochemical biosensor based on Duplex Specific Nuclease (DSN), that is designed for the accurate detection of Let-7a.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
Cancer Antigen 125 (CA125), is a high molecular weight mucinous glycoprotein found on the surface of ovarian cancer cells. Generally, 90 % of women may appear a high concentration of CA125 when they got the cancer; thus, CA125 can act as a marker for ovarian cancer diagnosis and therapeutic evaluation. COFs have been widely used for disease detection due to their structural stability, high loading capacity and biocompatibility.
View Article and Find Full Text PDFSci Adv
January 2025
Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA.
Precise and rapid disease detection is critical for controlling infectious diseases like COVID-19. Current technologies struggle to simultaneously identify viral RNAs and host immune antibodies due to limited integration of sample preparation and detection. Here, we present acoustofluidic integrated molecular diagnostics (AIMDx) on a chip, a platform enabling high-speed, sensitive detection of viral immunoglobulins [immunoglobulin A (IgA), IgG, and IgM] and nucleic acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!