Neutrophil Extracellular Traps and By-Products Play a Key Role in COVID-19: Pathogenesis, Risk Factors, and Therapy.

J Clin Med

Respiratory Medicine, University Hospital of Montpellier, Montpellier University, F-34298 Montpellier, France.

Published: September 2020

Understanding of the pathogenesis of the coronavirus disease-2019 (COVID-19) remains incomplete, particularly in respect to the multi-organ dysfunction it may cause. We were the first to report the analogous biological and physiological features of COVID-19 pathogenesis and the harmful amplification loop between inflammation and tissue damage induced by the dysregulation of neutrophil extracellular traps (NETs) formation. Given the rapid evolution of this disease, the nature of its symptoms, and its potential lethality, we hypothesize that COVID-19 progresses under just such an amplifier loop, leading to a massive, uncontrolled inflammation process. Here, we describe in-depth the correlations of COVID-19 symptoms and biological features with those where uncontrolled NET formation is implicated in various sterile or infectious diseases. General clinical conditions, as well as numerous pathological and biological features, are analogous with NETs deleterious effects. Among NETs by-products implicated in COVID-19 pathogenesis, one of the most significant appears to be elastase, in accelerating virus entry and inducing hypertension, thrombosis and vasculitis. We postulate that severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) may evade innate immune response, causing uncontrolled NETs formation and multi-organ failure. In addition, we point to indicators that NETS-associated diseases are COVID-19 risk factors. Acknowledging that neutrophils are the principal origin of extracellular and circulating DNA release, we nonetheless, explain why targeting NETs rather than neutrophils themselves may in practice be a better strategy. This paper also offers an in-depth review of NET formation, function and pathogenic dysregulation, as well as of current and prospective future therapies to control NETopathies. As such, it enables us also to suggest new therapeutic strategies to fight COVID-19. In combination with or independent of the latest tested approaches, we propose the evaluation, in the short term, of treatments with DNase-1, with the anti-diabetic Metformin, or with drugs targeting elastase (i.e., Silvelestat). With a longer perspective, we also advocate a significant increase in research on the development of toll-like receptors (TLR) and C-type lectin-like receptors (CLEC) inhibitors, NET-inhibitory peptides, and on anti-IL-26 therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565044PMC
http://dx.doi.org/10.3390/jcm9092942DOI Listing

Publication Analysis

Top Keywords

covid-19 pathogenesis
12
neutrophil extracellular
8
extracellular traps
8
covid-19
8
risk factors
8
nets formation
8
biological features
8
net formation
8
nets
5
traps by-products
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!