Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape.

Nanomaterials (Basel)

Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia.

Published: September 2020

Iron oxide nanoparticles (IONs) have been widely explored for biomedical applications due to their high biocompatibility, surface-coating versatility, and superparamagnetic properties. Upon exposure to an external magnetic field, IONs can be precisely directed to a region of interest and serve as exceptional delivery vehicles and cellular markers. However, the design of nanocarriers that achieve an efficient endocytic uptake, escape lysosomal degradation, and perform precise intracellular functions is still a challenge for their application in translational medicine. This review highlights several aspects that mediate the activation of the endosomal pathways, as well as the different properties that govern endosomal escape and nuclear transfection of magnetic IONs. In particular, we review a variety of ION surface modification alternatives that have emerged for facilitating their endocytic uptake and their timely escape from endosomes, with special emphasis on how these can be manipulated for the rational design of cell-penetrating vehicles. Moreover, additional modifications for enhancing nuclear transfection are also included in the design of therapeutic vehicles that must overcome this barrier. Understanding these mechanisms opens new perspectives in the strategic development of vehicles for cell tracking, cell imaging and the targeted intracellular delivery of drugs and gene therapy sequences and vectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559083PMC
http://dx.doi.org/10.3390/nano10091816DOI Listing

Publication Analysis

Top Keywords

iron oxide
8
oxide nanoparticles
8
endosomal escape
8
endocytic uptake
8
nuclear transfection
8
tailoring iron
4
nanoparticles efficient
4
efficient cellular
4
cellular internalization
4
internalization endosomal
4

Similar Publications

Loading monocytes with magnetic nanoparticles enables their magnetic control without toxicity.

Front Bioeng Biotechnol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.

Background: With the help of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be magnetically directed so that they can be accumulated at target sites. This principle can be used to make monocytes magnetically steerable in order to improve tumor accumulation, e.g.

View Article and Find Full Text PDF

Magnetoliposomes containing magnetite, soy lecithin, stigmasterol, and beta-sitosterol of the mean size minor than 160 nm were obtained by a scalable and green process using autoclave and sonication without organic solvents. The formation, size of the liposome, linkage, and encapsulation of the magnetite were evaluated by Cryo-TEM. The stability of magnetoliposomes after storage for 6 months at 4 °C was improved by liposome size, the ability of soy lecithin to preserve the magnetite phase against oxidation, pH, polydispersity index, and zeta potential.

View Article and Find Full Text PDF

Waste-to-Energy (WtE) generates circa 1 Mt/y of Mineral fraction of Incineration Bottom Ash (MIBA) in Sweden, often used as construction material for landfills. Upcoming European Commission directives will limit landfilling and the demand for MIBA for landfill construction is predicted to decrease. Therefore, alternative utilisations of MIBA are required.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.

View Article and Find Full Text PDF

Curcumin-coated iron oxide nanoparticles for photodynamic therapy of breast cancer.

Photochem Photobiol Sci

January 2025

Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.

Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!