We have recently demonstrated that neural stem cell-based intravitreal co-administration of glial cell line-derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF) confers profound protection to injured retinal ganglion cells (RGCs) in a mouse optic nerve crush model, resulting in the survival of ~38% RGCs two months after the nerve lesion. Here, we analyzed whether this neuroprotective effect is long-lasting and studied the impact of the pronounced RGC rescue on axonal regeneration. To this aim, we co-injected a GDNF- and a CNTF-overexpressing neural stem cell line into the vitreous cavity of adult mice one day after an optic nerve crush and determined the number of surviving RGCs 4, 6 and 8 months after the lesion. Remarkably, we found no significant decrease in the number of surviving RGCs between the successive analysis time points, indicating that the combined administration of GDNF and CNTF conferred lifelong protection to injured RGCs. While the simultaneous administration of GDNF and CNTF stimulated pronounced intraretinal axon growth when compared to retinas treated with either factor alone, numbers of regenerating axons in the distal optic nerve stumps were similar in animals co-treated with both factors and animals treated with CNTF only.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565883PMC
http://dx.doi.org/10.3390/cells9092082DOI Listing

Publication Analysis

Top Keywords

gdnf cntf
12
optic nerve
12
intravitreal co-administration
8
cntf confers
8
retinal ganglion
8
ganglion cells
8
neural stem
8
neurotrophic factor
8
protection injured
8
nerve crush
8

Similar Publications

VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition.

View Article and Find Full Text PDF

Introduction: Volumetric muscle loss (VML) is one of the most severe and debilitating conditions in orthopedic and regenerative medicine. Current treatment modalities often fail to restore the normal structure and function of the damaged skeletal muscle. Bioengineered tissue constructs using the patient's own cells have emerged as a promising alternative treatment option, showing positive outcomes in fostering new muscle tissue formation.

View Article and Find Full Text PDF

Hereditary neurodegenerative diseases (hNDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and others are primarily characterized by their progressive nature, severely compromising both the cognitive and motor abilities of patients. The underlying genetic component in hNDDs contributes to disease risk, creating a complex genetic landscape. Considering the fact that growth factors play crucial roles in regulating cellular processes, such as proliferation, differentiation, and survival, they could have therapeutic potential for hNDDs, provided appropriate dosing and safe delivery approaches are ensured.

View Article and Find Full Text PDF

GDF15 controls primary cilia morphology and function thereby affecting progenitor proliferation.

Life Sci Alliance

July 2024

Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany

We recently reported that growth/differentiation factor 15 (GDF15) and its receptor GDNF family receptor alpha-like (GFRAL) are expressed in the periventricular germinal epithelium thereby regulating apical progenitor proliferation. However, the mechanisms are unknown. We now found GFRAL in primary cilia and altered cilia morphology upon GDF15 ablation.

View Article and Find Full Text PDF

Background: Speech disorders have a substantial impact on communication abilities and quality of life. Traditional treatments such as speech and psychological therapies frequently demonstrate limited effectiveness and patient compliance. Transcranial electrical stimulation (TES) has emerged as a promising non-invasive treatment to improve neurological functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!