Electrospun membranes have shown promise for use in membrane distillation (MD) as they exhibit exceptionally low vapor transport. Their high porosity coupled with the occasional large pore can make them prone to wetting. In this work, initiated chemical vapor deposition (iCVD) is used to modify for electrospun membranes with increased hydrophobicity of the fiber network. To demonstrate conformal coating, we demonstrate the approach on intrinsically hydrophilic electrospun fibers and render the fibers suitable for MD. We enable conformal coating using a unique coating procedure, which provides convective flow of deposited polymers during iCVD. This is made possible by using a 3D printed scaffold, which changed the orientation of the membrane during the coating process. The new coating orientation allows both sides as well as the interior of the membrane to be coated simultaneously and reduced the coating time by a factor of 10 compared to conventional CVD approaches. MD testing confirmed the hydrophobicity of the material as 100% salt rejections were obtained.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570062 | PMC |
http://dx.doi.org/10.3390/polym12092074 | DOI Listing |
Nanoscale
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
Thermoplastic polyurethane (TPU) fabrics often possess good mechanical, waterproofing, and breathability properties. However, the resistance of TPU to excessive ultraviolet (UV) irradiation is poor and often does not meet the UV resistance requirements of fabrics. Electrospun nanofibers with a side-by-side structure can combine the advantages of different materials.
View Article and Find Full Text PDFMethodsX
June 2025
Technological Insitute of Sonora, Ciudad Obregon, Sonora MX-85000, Mexico.
Electrospinning can be used to prepare membranes with characteristics for biomedical application. In this work, the electrospinning conditions for the fabrication of membranes based on polymers extracted from natural sources such as chitosan and collagen were optimized (injection flow, injection volume, distance from the collector to the neddle, needle size and voltage). Specifically, four formulations were prepared with pure chitosan and mixtures of collagen (purified or hydrolyzed) and agarose.
View Article and Find Full Text PDFNat Protoc
January 2025
Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.
Photoporation with free photothermal nanoparticles (NPs) is a promising technology for gentle delivery of functional biomacromolecules into living cells, offering great flexibility in terms of cell types and payload molecules. However, the translational use of photoporation, such as for transfecting patient-derived cells for cell therapies, is hampered by safety and regulatory concerns as it relies on direct contact between cells and photothermal NPs. A solution is to embed the photothermal NPs in electrospun nanofibers, which form a substrate for cell culture.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia. Electronic address:
Dyes can seriously harm human health because they linger or break down in the environment and find their way into drinking water through the water cycle. Examples of the most important interactions between MOFs and dyes are provided, and an effort is made to comprehend how surface charge and size compatibility affect the adsorption process. The methods for incorporating functionalized Ce-MOF into electrospun nanofibers made of polyvinyl alcohol and chitosan to create functionalized cerium metal organic framework nanofiber membranes (FCCP nanofiber membranes) are presented in this paper.
View Article and Find Full Text PDFBiopolymers
March 2025
Department of Chemical and Materials Engineering, University of Alberta, Alberta, Canada.
When the kidneys are injured, uremic toxins (UTXs) accumulate in the body, affecting other tissues and causing a loss of essential body functions. This study investigated the adsorption of blood plasma-laden UTXs on the surface of PCL fibers to assess their potential as an alternative to membrane dialysis materials. Using plasma containing 26 UTXs at a concentration similar to that found in end-stage kidney disease patients, we analyzed the adsorbed proteins and examined clot formation in normal and toxin-treated plasma in the presence of PCL fibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!