Measuring Effects of Two-Handed Side and Anterior Load Carriage on Thoracic-Pelvic Coordination Using Wearable Gyroscopes.

Sensors (Basel)

Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

Published: September 2020

Manual carrying of heavy weight poses a major risk for work-related low back injury. Body-worn inertial sensors present opportunities to study the effects of ambulatory work tasks such as load carriage in more realistic conditions. An immediate effect of load carriage is reflected in altered gait kinematics. To determine the effects of load carriage mode and magnitude on gait parameters using body-worn angular rate gyroscopes, two laboratory experiments ( = 9 and = 10, respectively) were conducted. Participants performed walk trials at self-selected speeds while carrying hand loads in two modes (two-handed side vs. anterior) at four load levels (empty-handed, 4.5 kg, 9.1 kg, and 13.6 kg). Six measures of postural sway and three measures of thoracic-pelvic coordination were calculated from data recorded by four body-worn gyroscopes for 1517 gait cycles. Results demonstrated that, after adjusting for relative walking speed, thoracic-pelvic sway, and movement coordination particularly in the coronal and transverse planes, characterized by gyroscope-based kinematic gait parameters, are systematically altered by the mode of load carriage and load magnitude. Similar trends were obtained for an anthropometrically homogenous (Expt-1) and diverse (Expt-2) sample after adjusting for individual differences in relative walking speed. Measures of thoracic-pelvic coordination and sway showed trends of significant practical relevance and may provide sufficient information to typify alterations in gait across two-handed side vs. anterior load carriage of different load magnitudes. This study contributes to understanding the effects of manual load carriage on thoracic-pelvic movement and the potential application of body-worn gyroscopes to measuring these gait adaptations in naturalistic work settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571224PMC
http://dx.doi.org/10.3390/s20185206DOI Listing

Publication Analysis

Top Keywords

load carriage
28
two-handed side
12
side anterior
12
anterior load
12
thoracic-pelvic coordination
12
load
10
carriage thoracic-pelvic
8
gait parameters
8
measures thoracic-pelvic
8
body-worn gyroscopes
8

Similar Publications

Introduction: Infantry is a physically demanding trade that is associated with elevated rates of musculoskeletal injury. A 17-week longitudinal intervention assessed the effect of a progressive increase in load carriage mass and sprint-intensity intervals on physical performance, physical complaints, medical encounters, physical activity and sleep in infantry trainees.

Methods: 91 infantry trainees from 2 separate platoons, randomly assigned as control (CON) or experimental (EXP), provided written voluntary consent.

View Article and Find Full Text PDF

Calcium supplementation before exercise attenuates the decrease in serum calcium and increase in PTH and bone resorption. This study investigated the effect of calcium supplementation on calcium and bone metabolism during load carriage in women. Forty-eight women completed two load carriage sessions (load carriage 1 n = 48; load carriage 2 n = 40) (12.

View Article and Find Full Text PDF

Impact of backpack load during walking: an EMG and biomechanical analysis.

Med Biol Eng Comput

January 2025

Biomedical Engineering, Bahçeşehir University, Çırağan Caddesi Osmanpaşa Mektebi Sokak No: 4-6 Beşiktaş, İstanbul, 34353, Turkey.

This study aims to understand the impact of backpack carriage, a regular activity for many, on back muscles and joint mobility during walking so that clinicians can develop strategies or products to ensure individuals' safety and well-being. Surface electromyography (EMG) and XSENS Awinda motion capture systems were used to analyze the effects of carrying a backpack (12% of body weight) on erector spinae and multifidus muscles, as well as spinal, hip, knee, and ankle joints. Subjects walked at 4 km/h on flat and inclined surfaces.

View Article and Find Full Text PDF

Introduction: Load carriage is an inherent part of tactical operations. Critical speed (CS) has been associated with technical and combat-specific performance measures (e.g.

View Article and Find Full Text PDF

To assess the impact of thoracic load carriage on the physiological response to exercise in hypoxia. Healthy males (n = 12) completed 3 trials consisting of 45 min walking in the following conditions: (1) unloaded normoxia (UN; FO:20.93%); (2) unloaded hypoxia (UH; FO:~13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!