Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The intriguing physics of non-Hermitian systems satisfying parity-time (PT) symmetry has spurred a surge of both theoretical and experimental research in interleaved gain-loss systems for novel photonic devices. In this work, we investigate vertically stacked GaInP PT-symmetric nanodisk resonators arranged in two-dimensional periodic lattice using full-wave numerical simulations and scattering matrix theory. The proposed dielectric metasurface supports lasing spectral singularities with asymmetric reflection and highly anisotropic far-field scattering patterns. It offers a much broader design parameter space to control wavelength, scattering direction, and efficiency of optical emission when compared to the predominantly one-dimentional (1D) or quasi-1D structures studied so far. The proposed system with Q-factor >10 serves as a powerful platform for enhanced light-matter interaction by enabling extensive control of asymmetric light scattering, amplification, and unprecedented localization of electromagnetic fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.398551 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!