Circular RNAs are involved in the occurrence and development of different types of cancers. We aimed to illustrate the expression profile and mechanism of circ_0074027 in non-small cell lung cancer (NSCLC). Quantitative real-time PCR was employed to detect the expression of circ_0074027, paired like homeodomain 1 (PITX1) mRNA (mPITX1) and microRNA-362-3p (miR-362-3p). Western blot assay was utilized to measure the levels of clathrin heavy chain (CLTC), cyclin D1, BCL2-associated X, apoptosis regulator Bax (Bax), vimentin and matrix metallopeptidase 9. The clonogenicity, apoptosis and metastasis of NSCLC cells were examined by colony formation assay, flow cytometry and transwell migration and invasion assays. The target relationship between miR-362-3p and circ_0074027 or CLTC was predicted by starBase website and was validated by dual-luciferase reporter assay. Murine xenograft assay was applied to explore the function of circ_0074027 in vivo. We found that The enrichment of circ_0074027 and CLTC protein was elevated, and a significant reduction in the expression of miR-362-3p was observed in NSCLC tissues and cells relative to adjacent normal tissues and human bronchial epithelial cells 16HBE. Circ_0074027 possessed a stable circular structure. Circ_0074027 and CLTC could accelerate the colony formation and metastasis and suppress the apoptosis of NSCLC cells. Circ_0074027/miR-362-3p/CLTC axis was first found to regulate the malignance of NSCLC cells. The biological influence caused by circ_0074027 depletion on NSCLC cells was alleviated by the accumulation of CLTC. Circ_0074027 acted as an oncogene to promote the growth of NSCLC tumors in vivo. In conclusion, Circ_0074027 contributed to the progression of NSCLC through promoting the proliferation and motility while hampering the apoptosis of NSCLC cells via miR-362-3p/CLTC axis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CAD.0000000000000990DOI Listing

Publication Analysis

Top Keywords

nsclc cells
20
circ_0074027 cltc
12
circ_0074027
11
nsclc
9
non-small cell
8
cell lung
8
lung cancer
8
heavy chain
8
colony formation
8
apoptosis nsclc
8

Similar Publications

CircKIAA0182 Enhances Lung Cancer Progression and Chemoresistance through Interaction with YBX1.

Cancer Lett

January 2025

Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; Institute of Clinical Pharmacology, Central South University, Changsha 410078, P. R. China. Electronic address:

Lung cancer, particularly non-small cell lung cancer (NSCLC), remains a leading cause of cancer-related mortality. Resistance to platinum-based chemotherapy, such as cisplatin, significantly limits treatment efficacy. Circular RNAs (circRNAs) have emerged as key regulators of cancer progression and chemotherapy resistance due to their stable structure, which protects them from degradation.

View Article and Find Full Text PDF

Network Pharmacology Approach and Experimental Verification to Explore the Anti-NSCLC Mechanism of Grifolic Acid.

Int J Mol Sci

January 2025

Key Laboratory of Pu-Er Tea Science, Ministry of Education, Yunnan Agricultural University, Heilongtan, North of Kunming, Kunming 650201, China.

Lung cancer is the leading cause of cancer-related death. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers and over 60% express wild-type EGFR (WT-EGFR); however, EGFR tyrosine kinase inhibitors (TKIs) have limited effect in most patients with WT-EGFR tumors. In this study, we applied network pharmacology screening and MTT screening of bioactive compounds to obtain one novel grifolic acid that may inhibit NSCLC through the EGFR-ERK1/2 pathway.

View Article and Find Full Text PDF

The X-Linked Tumor Suppressor TSPX Regulates Genes Involved in the EGFR Signaling Pathway and Cell Viability to Suppress Lung Adenocarcinoma.

Genes (Basel)

January 2025

Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and the Institute for Human Genetics, University of California, San Francisco, CA 94121, USA.

TSPX is an X-linked tumor suppressor that was initially identified in non-small cell lung cancer (NSCLC) cell lines. However, its expression patterns and downstream mechanisms in NSCLC remain unclear. This study aims to investigate the functions of TSPX in NSCLC by identifying its potential downstream targets and their correlation with clinical outcomes.

View Article and Find Full Text PDF

Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14-17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis.

View Article and Find Full Text PDF

C/EBPβ Regulates HIF-1α-Driven Invasion of Non-Small-Cell Lung Cancer Cells.

Biomolecules

December 2024

Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea.

Metastatic cancer accounts for most cancer-related deaths, and identifying specific molecular targets that contribute to metastatic progression is crucial for the development of effective treatments. Hypoxia, a feature of solid tumors, plays a role in cancer progression by inducing resistance to therapy and accelerating metastasis. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) transcriptionally regulates () and thus promotes migration and invasion of non-small-cell lung cancer (NSCLC) cells under hypoxic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!