Temporal dynamics of visual representations in the infant brain.

Dev Cogn Neurosci

Haskins Laboratories, 300 George Street, New Haven, CT, 06511, USA; Psychological Sciences Department, University of Connecticut, Storrs, CT, 06269, USA; Department of Psychology, Yale University, New Haven, CT, 06511, USA; Yale Child Study Center, School of Medicine, New Haven, CT, 06519, USA.

Published: October 2020

Tools from computational neuroscience have facilitated the investigation of the neural correlates of mental representations. However, access to the representational content of neural activations early in life has remained limited. We asked whether patterns of neural activity elicited by complex visual stimuli (animals, human body) could be decoded from EEG data gathered from 12-15-month-old infants and adult controls. We assessed pairwise classification accuracy at each time-point after stimulus onset, for individual infants and adults. Classification accuracies rose above chance in both groups, within 500 ms. In contrast to adults, neural representations in infants were not linearly separable across visual domains. Representations were similar within, but not across, age groups. These findings suggest a developmental reorganization of visual representations between the second year of life and adulthood and provide a promising proof-of-concept for the feasibility of decoding EEG data within-subject to assess how the infant brain dynamically represents visual objects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498752PMC
http://dx.doi.org/10.1016/j.dcn.2020.100860DOI Listing

Publication Analysis

Top Keywords

visual representations
8
infant brain
8
eeg data
8
visual
5
representations
5
temporal dynamics
4
dynamics visual
4
representations infant
4
brain tools
4
tools computational
4

Similar Publications

Introduction: Our previous work demonstrated that evaluating large ischemic cores using the apparent diffusion coefficient (ADC) could predict EVT outcomes, with the most frequent ADC (peak ADC) ≥520×10 mm/s associated with better clinical results. Since the degree of ADC reduction reflects the severity of ischemic stress, this study aimed to assess the utility of an ADC color map in visualizing this stress.

Patients And Methods: This retrospective cohort study included consecutive patients with a low Alberta Stroke Program Early Computed Tomography Score (ASPECTS) using diffusion-weighted imaging (DWI) who underwent successful EVT recanalization between April 2014 and March 2023.

View Article and Find Full Text PDF

Visual cues of respiratory contagion: Their impact on neuroimmune activation and mucosal immune responses in humans.

Brain Behav Immun

January 2025

Department of Biology, Neuroendocrinology and Human Biology Unit, Institute for Animal Cell- and Systems Biology, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, D-22085 Hamburg, Germany. Electronic address:

This study investigated the neural correlates of perceiving visual contagion cues characteristic of respiratory infections through functional magnetic resonance imaging (fMRI). Sixty-two participants (32f/ 30 m; ∼25 years on average) watched short videos depicting either contagious or non-contagious everyday situations, while their brain activation was continuously measured. We further measured the release of secretory immunoglobulin A (sIgA) in saliva to examine the first-line defensive response of the mucosal immune system.

View Article and Find Full Text PDF

The human visual system possesses a remarkable ability to detect and process faces across diverse contexts, including the phenomenon of face pareidolia--seeing faces in inanimate objects. Despite extensive research, it remains unclear why the visual system employs such broadly tuned face detection capabilities. We hypothesized that face pareidolia results from the visual system's optimization for recognizing both faces and objects.

View Article and Find Full Text PDF

Goal-directed behavior requires the effective suppression of distractions to focus on the task at hand. Although experimental evidence suggests that brain areas in the prefrontal and parietal lobe contribute to the selection of task-relevant and the suppression of task-irrelevant stimuli, how conspicuous distractors are encoded and effectively ignored remains poorly understood. We recorded neuronal responses from 2 regions in the prefrontal and parietal cortex of macaques, the frontal eye fields (FEFs) and the lateral intraparietal (LIP) area, during a visual search task, in the presence and absence of a salient distractor.

View Article and Find Full Text PDF

Efficient visual word recognition presumably relies on orthographic prediction error (oPE) representations. On the basis of a transparent neurocognitive computational model rooted in the principles of the predictive coding framework, we postulated that readers optimize their percept by removing redundant visual signals, allowing them to focus on the informative aspects of the sensory input (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!