The aim of this study was to investigate the molecular mechanisms of arginine (Arg) on follicular development of acute feed-restricted ewes during the luteal phase. From day 6 of the estrous cycle, 24 multiparous Hu sheep were randomly assigned into three groups: control group (a maintenance diet; n = 6), feed restriction group (0.5 maintenance diet, saline infusion; n = 9) and Arg treatment group (0.5 maintenance diet, infusion with 155 μmol of Arg-HCl/kg body weight; n = 9). The intravenous administrations were performed three times per day from day 6 to day 15 of the estrous cycle. At the end of treatment, the hypothalamus and pituitary were collected, as well as the follicular fluid (FF) and granulose cells (GCs) in the ≥2.5 mm follicles. The transcription level of NPVF was significantly increased, and the expression level of GNRH was significantly decreased in the hypothalamus with feed restriction. In addition, feed restriction significantly decreased the number of ≥2.5 mm follicles in the ovaries. In the ≥2.5 mm follicles, feed restriction significantly increased estradiol (E) level in FF and the expression levels of steroidogenesis related genes (STAR, 3BHSD and CYP19A1) in GCs, while significantly decreased the expressions of FSHR and cell proliferation related genes (YAP1, CCND1 and PCNA) in GCs. Moreover, the activities of glucose metabolism enzymes (PFKP and G6PDH) were significantly decreased in GCs of the ≥2.5 mm follicles with feed restriction. Interestingly, as a precursor of nitric oxide, Arg supplementation can rescue the effects of feed restriction on follicular development by enhancing glucose metabolism and cell proliferation of GCs, and alleviating the abnormal E secretion in the ≥2.5 mm follicles, accompanied with recovering the expressions of NPVF and GNRH in the hypothalamus. These findings will be helpful for understanding the role of nutrition and Arg in sheep follicular development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2020.09.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!