Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents a computational study of the adsorptive desulfurization of small aromatic sulfur compounds by conjugated microporous polymers (CMPs). The density-functional tight-binding method augmented with an R dispersion correction is employed to investigate the physisorption binding mechanism and electronic properties of the CMP-aromatic sulfur complexes. We show that the widely extended π conjugation in the CMP skeletons is favorable for the non-covalent adsorption of aromatic thiophene and dibenzothiophene via π-π, H-π, and S-π interactions. The average binding energies are calculated to be -6.2 ∼ -15.2 kcal/mol for CMP- thiophene/dibenzothiophene systems. For the dibenzothiophene molecule with larger size and more extended conjugation, it binds more than twice stronger to CMP than the thiophene molecule. We show that the replacement of quinoline unit to the phenylene group in the network linker effectively enhances the average binding capacities by around 0.8-1.8 kcal/mol. Our calculations theoretically demonstrate that CMPs materials are kind of promising candidates for the adsorptive desulfurization of small aromatic sulfur compounds. This paper provides useful theoretical guidance for design of novel carbon-based adsorbents for adsorptive desulfurization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2020.107734 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!