Defensins comprise a polyphyletic group of multifunctional defense peptides. Cis-defensins, also known as cysteine stabilized αβ (CSαβ) defensins, are one of the most ancient defense peptide families. In plants, these peptides have been divided into two classes, according to their precursor organization. Class I defensins are composed of the signal peptide and the mature sequence, while class II defensins have an additional C-terminal prodomain, which is proteolytically cleaved. Class II defensins have been described in Solanaceae and Poaceae species, indicating this class could be spread among all flowering plants. Here, a search by regular expression (RegEx) was applied to the Arabidopsis thaliana proteome, a model plant with more than 300 predicted defensin genes. Two sequences were identified, A7REG2 and A7REG4, which have a typical plant defensin structure and an additional C-terminal prodomain. TraVA database indicated they are expressed in flower, ovules and seeds, and being duplicated genes, this indicates they could be a result of a subfunctionalization process. The presence of class II defensin sequences in Brassicaceae and Solanaceae and evolutionary distance between them suggest class II defensins may be present in other eudicots. Discovery of class II defensins in other plants could shed some light on flower, ovules and seed physiology, as this class is expressed in these locations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2020.112511 | DOI Listing |
J Asian Nat Prod Res
January 2025
Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey.
Antimicrobial peptides are crucial components of the immune systems of both vertebrates and invertebrates. Here, defensins, the most studied class of antimicrobial molecules in arthropods were investigated in four coleopteran insect species: (DeGeer, 1774), (Linnaeus, 1767), (Linnaeus, 1758), and (Brullé, 1832). The peptides synthesized with over 95% purity and their antimicrobial activities were evaluated by MIC test method.
View Article and Find Full Text PDFNat Microbiol
January 2025
Sitala Bio, Cambridge, UK.
Microbiome science has evolved rapidly in the past decade, with high-profile publications suggesting that the gut microbiome is a causal determinant of human health. This has led to the emergence of microbiome-focused biotechnology companies and pharmaceutical company investment in the research and development of gut-derived therapeutics. Despite the early promise of this field, the first generation of microbiome-derived therapeutics (faecal microbiota products) have only recently been approved for clinical use.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
December 2024
School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley, Scotland, PA12BE, UK.
The human defensins are a group of cationic antimicrobial peptides that range in size from 2 to 5 kDa and share a common structural motif of six disulphide-linked cysteines. Several naturally occurring human α- and β-defensins have been identified over the past two decades. They have a wide variety of antimicrobial effects, and their potential to avoid the development of resistance to antimicrobial treatment makes them attractive as therapeutic agents.
View Article and Find Full Text PDFBioinform Biol Insights
December 2024
Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa.
Objective: Babesiosis is a significant haemoparasitic infection caused by apicomplexan parasites of the genus . This infection has continuously threatened cattle farmers owing to its devastating effects on productivity and severe economic implications. Failure to curb the increase of the infection has been attributed to largely ineffective vaccines.
View Article and Find Full Text PDFSci Rep
November 2024
Laboratory of Insect Nutrition and Metabolism, Department of Nutrition and Natural Products, MIGAL - Galilee Research Centre, 1101202, Kiryat Shmona, Israel.
The black soldier fly (Hermetia illucens) is important for antimicrobial peptide (AMP) research due to its exposure to diverse microorganisms. However, the impact of different fungi on AMP abundance in H. illucens remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!