The conversion of the glycerophospholipid phosphatidic acid (PA) into diacylglycerol (DAG) is essential for the biosynthesis of membrane phospholipids and storage fats. Importantly, both PA and DAG can also serve signaling functions in the cell. The dephosphorylation of PA that yields DAG can be executed by two different classes of enzymes, Mg-dependent lipins and Mg-independent lipid phosphate phosphatases. Here, I will discuss the current status of research directed at understanding the roles of these enzymes in insect development and metabolism. Special emphasis will be given to studies in the model organism Drosophila melanogaster.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952469 | PMC |
http://dx.doi.org/10.1016/j.ibmb.2020.103469 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, Geneva CH-1211, Switzerland.
Moth-eye nanostructures, known for their biological antireflective properties, are formed by a self-assembly mechanism. Understanding and replicating this mechanism on artificial surfaces open avenues for the engineering of bioinspired multifunctional nanomaterials. Analysis of corneal nanocoatings from butterflies of the genus reveals a variety of nanostructures with uniformly strong antiwetting properties accompanied by varying antireflective functionalities.
View Article and Find Full Text PDFNat Commun
January 2025
State key laboratory of rice biology and breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
Feeding and oviposition by phytophagous insects are both known to trigger defenses in plants. Whether these two defenses functionally interact remains poorly studied, although these interactions are likely important for pests with overlapping generations. Here we investigated the differences and interaction between feeding- and oviposition-induced plant defenses triggered by the brown planthopper (BPH, Nilaparvata lugens), which gregariously feeds and oviposits on rice.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
The microbiome influences critical aspects of mosquito biology and variations in microbial composition can impact the outcomes of laboratory studies. To investigate how biotic and abiotic conditions in an insectary affect the composition of the mosquito microbiome, a single cohort of Aedes aegypti eggs was divided into three batches and transferred to three different climate-controlled insectaries within the Liverpool School of Tropical Medicine. The bacterial microbiome composition was compared as mosquitoes developed, the microbiome of the mosquitoes' food sources was characterised, environmental conditions over time in each insectary were measured, and mosquito development and survival were recorded.
View Article and Find Full Text PDFFood Res Int
January 2025
Laboratory of Commodities and Territorial Analysis, Department of Economics and Law, University of Cassino and Southern Lazio, Via S. Angelo, Loc. Folcara, 03043 Cassino, (FR), Italy.
The potential use of edible insects as an alternative animal protein source has recently attracted a great deal of attention in Western countries. This is thanks to their numerous nutritional benefits, in particular in terms of vitamins and essential amino acids, and the need to guarantee food availability for the growing population. The aim of this scoping review is to analyse the current literature published in scientific journals regarding the main issues related to products containing edible insects, to map existing evidence and identify knowledge gaps.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!