Traumatic brain injury (TBI) is a leading cause of death and disability. Patients with isolated TBI lose a limited amount of blood to primary injury, but they often develop secondary coagulopathy, resulting in delayed or recurrent intracranial and intracerebral hematoma. TBI-induced coagulopathy is closely associated with poor outcomes for these patients, including death. This secondary coagulopathy is consumptive in nature, involving not only brain-derived molecules, coagulation factors, and platelets, but also endothelial cells in a complex process now called blood failture. A key question is how a localized injury to the brain is rapidly disseminated to affect systemic hemostasis that is not directly affected the way it is in trauma to the body and limbs, especially with hemorrhagic shock. Increasing evidence suggests that the adhesive ligand von Willebrand factor (VWF), which is synthesized in and released from endothelial cells, plays a paradoxical role in both facilitating local hemostasis at the site of injury and also propagating TBI-induced endotheliopathy and coagulopathy systemically. This review discusses recent progress in understanding these diverse activities of VWF and the knowledge gaps in defining their roles in TBI and associated coagulopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7855263PMC
http://dx.doi.org/10.1111/jth.15096DOI Listing

Publication Analysis

Top Keywords

diverse activities
8
von willebrand
8
willebrand factor
8
traumatic brain
8
brain injury
8
associated coagulopathy
8
secondary coagulopathy
8
endothelial cells
8
coagulopathy
6
injury
5

Similar Publications

Introduction: The coronavirus disease 2019 (COVID-19) pandemic has significantly impacted public transportation systems worldwide. In this study, we evaluated the rate of COVID-19 positivity and its associated factors among users of public transportation in socioeconomically disadvantaged regions of Brazil during the pre-vaccination phase of the pandemic.

Methodology: This ecological study, conducted in Aracaju city in Northeast Brazil, is a component of the TestAju Program.

View Article and Find Full Text PDF

Background: Developing interventions along with the population of interest using systems thinking is a promising method to address the underlying system dynamics of overweight. The purpose of this study is twofold: to gain insight into the perspectives of adolescents regarding: (1) the system dynamics of energy balance-related behaviours (EBRBs) (physical activity, screen use, sleep behaviour and dietary behaviour); and (2) underlying mechanisms and overarching drivers of unhealthy EBRBs.

Methods: We conducted Participatory Action Research (PAR) to map the system dynamics of EBRBs together with adolescents aged 10-14 years old living in a lower socioeconomic, ethnically diverse neighbourhood in Amsterdam East, the Netherlands.

View Article and Find Full Text PDF

Acoustical properties are essential for understanding the molecular interactions in fluids, as they influence the physicochemical behavior of liquids and determine their suitability for diverse applications. This study investigated the acoustical parameters of silver nanoparticles (Ag NPs), reduced graphene oxide (rGO), and Ag/rGO nanocomposite nanofluids at varying concentrations. Ag NPs and Ag/rGO nanocomposites were synthesized via a Bos taurus indicus (BTI) metabolic waste-assisted method and characterized using advanced techniques, including XRD, TEM, Raman, DLS, zeta potential, and XPS.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

The involvement of B lymphocytes in the pathogenesis of rheumatoid arthritis (RA) is well-established, with their early and aberrant activation being a crucial factor. However, the mechanisms underlying this abnormal activation in RA remain incompletely understood. In this study, we identified a significant reduction in MAPK4 expression in both RA patients and collagen-induced arthritis (CIA) mouse models, which correlates with disrupted B cell activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!