Internal contamination by radionuclides may constitute a major source of exposure and biological damage after radiation accidents and potentially in a dirty bomb or improvised nuclear device scenario. We injected male C57BL/6 mice with radiolabeled cesium chloride solution (137CsCl) to evaluate the biological effects of varying cumulative doses and dose rates in a two-week study. Injection activities of 137CsCl were 5.71, 6.78, 7.67 and 9.29 MBq, calculated to achieve a target dose of 4 Gy at days 14, 7, 5 and 3, respectively. We collected whole blood samples at days 2, 3, 5, 7 and 14 so that we can publish the issue in Decemberfrom all injection groups and measured gene expression using Agilent Mouse Whole Genome microarrays. We identified both dose-rate-independent and dose-rate-dependent gene expression responses in the time series. Gene Ontology analysis indicated a rapid and persistent immune response to the chronic low-dose-rate irradiation, consistent with depletion of radiosensitive B cells. Pathways impacting platelet aggregation and TP53 signaling appeared activated, but not consistently at all times in the study. Clustering of genes by pattern and identification of dose-rate-independent and -dependent genes provided insight into possible drivers of the dynamic transcriptome response in vivo, and also indicated that TP53 signaling may be upstream of very different transcript response patterns. This characterization of the biological response of blood cells to internal radiation at varying doses and dose rates is an important step in understanding the effects of internal contamination after a nuclear event.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864709 | PMC |
http://dx.doi.org/10.1667/RADE-20-00041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!