Modulation of the transport properties of metal/MoS interfaces using BN-graphene lateral tunneling layers.

Nanotechnology

State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Shaanxi Joint Key Laboratory of Graphene, Advanced Interdisciplinary Research Center for Flexible Electronics, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an 710071, People's Republic of China.

Published: November 2020

Modulating the n- and p-type interfacial charge transport properties of the metal-semiconductor interface is vital to realizing high performance two-dimensional material nanodevices and is still a significant challenge. Here, a boron nitride (BN)-graphene lateral heterostructure (LH) was used as the interfacial tunneling layer to control the Schottky barrier, Fermi level pinning and charge injection efficiency of the metal-MoS interface. The BN-graphene LH with graphene-N junction structure decreased the n-type vertical Schottky barrier and enhanced the interfacial tunneling probability, while the graphene-B junction structure decreased the p-type vertical Schottky barrier. Consequently, the n-type Au/LH-MoS interface with Ohmic character and high tunneling probability (∼0.242) and the p-type vertical Schottky barrier of about 0.20 eV for the Pt/LH-MoS interface were achieved. Compared to other reported BN or graphene tunneling layers, such a BN-graphene LH tunneling layer not only suppressed the charge scattering from the metal electrode to the MoS layer and the Fermi level pinning effect, but also reduced the contact resistance between metal electrode and tunneling layer. The underlying mechanisms were revealed to be due to the charge transfer, orbitals and interfacial dipole. This work improves the current understanding of the metal-MoS interface and proposes a new way to overcome the current severe contact issues for future nanoelectronic and optoelectronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abafdbDOI Listing

Publication Analysis

Top Keywords

schottky barrier
16
tunneling layer
12
vertical schottky
12
transport properties
8
bn-graphene lateral
8
tunneling layers
8
interfacial tunneling
8
fermi level
8
level pinning
8
metal-mos interface
8

Similar Publications

Dipole-induced transitions from Schottky to Ohmic contact at Janus MoSiGeN/metal interfaces.

Nanoscale Horiz

January 2025

SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.

Janus MoSiGeN monolayers exhibit exceptional mechanical stability and high electron mobility, which make them a promising channel candidate for field-effect transistors (FETs). However, the high Schottky barrier at the contact interface would limit the carrier injection efficiency and degrade device performance. Herein, using density functional theory calculations and machine learning methods, we investigated the interfacial properties of the Janus MoSiGeN monolayer and metal electrode contacts.

View Article and Find Full Text PDF

In-Plane Polarization-Triggered WS-Ferroelectric Heterostructured Synaptic Devices.

ACS Appl Mater Interfaces

January 2025

School of Information Science and Technology, Fudan University, Shanghai 200433, China.

To date, various kinds of memristors have been proposed as artificial neurons and synapses for neuromorphic computing to overcome the so-called von Neumann bottleneck in conventional computing architectures. However, related working principles are mostly ascribed to randomly distributed conductive filaments or traps, which usually lead to high stochasticity and poor uniformity. In this work, a heterostructure with a two-dimensional WS monolayer and a ferroelectric PZT film were demonstrated for memristors and artificial synapses, triggered by in-plane ferroelectric polarization.

View Article and Find Full Text PDF

Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.

View Article and Find Full Text PDF

Vanadium-based oxides have garnered significant attention for aqueous zinc batteries (AZBs), whereas sluggish Zn diffusion and structural collapse remain major challenges in achieving high-performance cathodes. Herein, different structures of iron-vanadium oxides were fabricated by modulating the amount of vanadium content. It is found that the porous Mott-Schottky heterojunction composed of FeVO and FeVO mixed phase was used to construct a self-generated FeVO-5 structure, which could lower the diffusion barrier and improve the electron transport derived from the formed built-in electric field at the interface, showing faster reaction kinetics and improved capacity compared with the singe-phase FeVO-1.

View Article and Find Full Text PDF

Self-adaptive dielectrics (SADs), with the characteristics of rapid charge dissipation in electric field distortion, is regarded as the future material for package insulation of advanced electronic devices. The current landscape of SADs is incapable to achieve tunable nonlinear electrical conductivity and threshold field strength due to the inherent Schottky barrier, significantly limiting the application scenarios of SADs. Here, a strategy is reported to construct a stepped Schottky barrier through virus-like structures, which are composed of subminiature metal particles and semiconductor microspheres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!