A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-Res-Attention UNet: A CNN Model for the Segmentation of Focal Cortical Dysplasia Lesions from Magnetic Resonance Images. | LitMetric

In this work, we have focused on the segmentation of Focal Cortical Dysplasia (FCD) regions from MRI images. FCD is a congenital malformation of brain development that is considered as the most common causative of intractable epilepsy in adults and children. To our knowledge, the latest work concerning the automatic segmentation of FCD was proposed using a fully convolutional neural network (FCN) model based on UNet. While there is no doubt that the model outperformed conventional image processing techniques by a considerable margin, it suffers from several pitfalls. First, it does not account for the large semantic gap of feature maps passed from the encoder to the decoder layer through the long skip connections. Second, it fails to leverage the salient features that represent complex FCD lesions and suppress most of the irrelevant features in the input sample. We propose Multi-Res-Attention UNet; a novel hybrid skip connection-based FCN architecture that addresses these drawbacks. Moreover, we have trained it from scratch for the detection of FCD from 3 T MRI 3D FLAIR images and conducted 5-fold cross-validation to evaluate the model. FCD detection rate (Recall) of 92% was achieved for patient wise analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2020.3024188DOI Listing

Publication Analysis

Top Keywords

multi-res-attention unet
8
segmentation focal
8
focal cortical
8
cortical dysplasia
8
fcd
6
unet cnn
4
model
4
cnn model
4
model segmentation
4
dysplasia lesions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!