Chronic headache pain is one of the most commonly reported comorbid pain conditions with post-traumatic stress disorder (PTSD) patients and resistant to effective treatment, yet no combined preclinical model of the two disorders has been reported. Here, we used a modified chronic headache pain model to investigate the contribution of single prolonged stress (SPS) model of PTSD with sodium nitroprusside (SNP)-induced hyperalgesia. Injection of SNP (2 mg/kg, i.p.) occurred every other day from day 7 to day 15 after initiation of SPS in rats. Paw withdrawal threshold (PWT) to von Frey stimuli and tail flick latencies (TFL) dramatically decreased as early as 7 days after SPS and lasted until at least day 21. Basal PWT and TFL also significantly decreased during the SNP treatment period. The lower nociceptive thresholds recovered in 6 days following the final SNP injection in SNP group, but not in SPS + SNP group. Elevated nociceptin/OFQ (N/OFQ) levels observed in cerebrospinal fluid of SPS rats were even higher in SPS + SNP group. Glial fibrillary acidic protein (GFAP) and N/OFQ peptide (NOP) receptor mRNA expression increased in dorsal root ganglia (DRG) 21 days after SPS exposure; mRNA increases in the SPS/SNP group was more pronounced than SPS or SNP alone. GFAP protein expression was upregulated in trigeminal ganglia by SPS. Our results indicate that traumatic stress exaggerated chronic SNP-induced nociceptive hypersensitivity, and that N/OFQ and activated satellite glia cells may play an important role in the interaction between both conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159770 | PMC |
http://dx.doi.org/10.1007/s10571-020-00962-8 | DOI Listing |
J Palliat Med
January 2025
American Clinicians Academy on Medical Aid in Dying, Berkeley, California, USA.
Medical aid in dying is legal in 10 states plus Washington DC, covering 22% of the U.S. population.
View Article and Find Full Text PDFmBio
January 2025
Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
Structural maintenance of chromosomes (SMC) are ubiquitously distributed proteins involved in chromosome organization. Deletion of causes severe growth phenotypes in many organisms. Surprisingly, can be deleted in , a member of the phylum, without any apparent growth phenotype.
View Article and Find Full Text PDFCirc Heart Fail
January 2025
Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.).
Background: The therapeutic armamentarium for heart failure with preserved ejection fraction (HFpEF) remains notably constrained. A factor contributing to this problem could be the scarcity of in vitro models for HFpEF, which hinders progress in developing new therapeutic strategies. Here, we aimed at developing a novel, comorbidity-inspired, human, in vitro model for HFpEF.
View Article and Find Full Text PDFLife Metab
February 2025
New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China.
Glucose-stimulated insulin release from pancreatic β-cells is critical for maintaining blood glucose homeostasis. An abrupt increase in blood glucose concentration evokes a rapid and transient rise in insulin secretion followed by a prolonged, slower phase. A diminished first phase is one of the earliest indicators of β-cell dysfunction in individuals predisposed to develop type 2 diabetes.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!