Design of auxiliary systems for spectroscopy.

Faraday Discuss

Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA/DRF/IRAMIS, Institut Polytechnique de Paris, F-91128 Palaiseau, France.

Published: December 2020

AI Article Synopsis

  • The Kohn-Sham system is an effective method for calculating electronic density without dealing with complex many-body wavefunctions, although it doesn't directly address excited states.
  • The proposal suggests creating auxiliary systems with specialized potentials that focus on specific spectral properties needed for analysis, rather than calculating extensive data that might be unnecessary.
  • The text also explores how to develop simplified effective kernels for optical absorption and photoemission, outlining their dependence on electronic density, making the calculations more efficient.

Article Abstract

The Kohn-Sham system is the prototypical example of an auxiliary system that targets, in principle exactly, an observable like the electronic density without the need to calculate the complicated many-body wavefunction. Although the Kohn-Sham system does not describe excited-state properties directly, it also represents a very successful strategy guideline for many spectroscopy applications. Here we propose a generalization of the Kohn-Sham idea. In many situations one is interested only in limited answers to specific questions, whereas in state-of-the-art approaches a lot of information is generally calculated that is not needed for the interpretation of experimental spectra. For example, when the target is a spectrum S(ω) like the optical absorption of a solid, within time-dependent density-functional theory (TDDFT) one calculates the whole response function χ(r,r',ω). Analogously, within many-body perturbation theory (MBPT) one calculates the whole one-particle Green's function G(r,r',ω), while only the total spectral function A(ω) is needed for angle-integrated photoemission spectra. In this contribution, we advocate the possibility of designing auxiliary systems with effective potentials or kernels that target only the specific spectral properties of interest and are simpler than the self-energy of MBPT or the exchange-correlation kernel of TDDFT. In particular, we discuss the fundamentals and prototypical applications of simplified effective kernels for optical absorption and spectral potentials for photoemission, and we discuss how to express these potentials or kernels as functionals of the density.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0fd00067aDOI Listing

Publication Analysis

Top Keywords

auxiliary systems
8
kohn-sham system
8
optical absorption
8
potentials kernels
8
design auxiliary
4
systems spectroscopy
4
spectroscopy kohn-sham
4
system prototypical
4
prototypical example
4
example auxiliary
4

Similar Publications

Comprehensive Research Facility for Fusion Technology (CRAFT) is a technology development and validation platform for fusion technology in China. Neutral beam injection is one of the most important auxiliary heating and current drive methods in magnetically confined controlled fusion. Consequently, a negative ion based neutral beam injector (NNBI) testing facility with a beam energy of 400 keV is being developed in CRAFT.

View Article and Find Full Text PDF

Photomodulated Transient Catalytic Constitutional Dynamic Networks and Reaction Circuits.

Angew Chem Int Ed Engl

January 2025

The Hebrew University of Jerusalem - Givat Ram Campus: Hebrew University of Jerusalem - Edmond J Safra Campus, Institute of Chemistry, Givat Ram, 91904, Jerusalem, ISRAEL.

A method to photomodulate dynamically transient DNA-based reaction circuits and networks is introduced. The method relies on the integration of photoresponsive o-nitrobenzyl-phosphate ester-caged DNA hairpin with a "mute" reaction module. Photodeprotection (λ = 365 nm) of the hairpin structure separates a fuel strand triggering the dynamic, transient, operation of the DNA circuit/network.

View Article and Find Full Text PDF

Evaluation of an enhanced ResNet-18 classification model for rapid On-site diagnosis in respiratory cytology.

BMC Cancer

January 2025

Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.

Objective: Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has important clinical value.

View Article and Find Full Text PDF

Weakly supervised deep learning-based classification for histopathology of gliomas: a single center experience.

Sci Rep

January 2025

Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Avenue, Chengdu, 610041, People's Republic of China.

Multiple artificial intelligence systems have been created to facilitate accurate and prompt histopathological diagnosis of tumors using hematoxylin-eosin-stained slides. We aimed to investigate whether weakly supervised deep learning can aid in glioma diagnosis. We analyzed 472 whole slide images (WSIs) from 226 patients in West China Hospital (WCH) and 1604 WSIs from 880 patients in The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

In radar systems, element gain-phase errors can degrade the performance of space-time adaptive processing (STAP), and even cause complete failure. To address this issue, the STAP with the coprime sampling structure based on optimal singular value thresholding is proposed. The algorithm corrects errors by adding four calibrated auxiliary elements and auxiliary pulses to the original array and pulse sequence, while maintaining the coprime sampling structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!