The surface characteristics of electrodes vary depending on the solvent used. Furthermore, electrochemical performance varies depending on the surface morphology of the electrode. In this study, we grew 3D binary NiCu-based composites on Ni foam, via a binder-free hydrothermal method, for use as a cathode in high-performance supercapacitors. We employed different solvents to prepare the electrodes by adjusting the ratio of deionized water (DI water) to methanol. The electrode prepared using DI water as the solvent had the largest surface area with a nanowire structure. This morphology allowed for good electrical performance by greatly improving the electrode and electrolyte contact area and shortening the ion diffusion path. The optimized deposition of NiCu(CO)(OH) nanowires (50 mL of DI water as solvent) showed an excellent maximum specific capacity of 758.9 mA h g at a current density of 3 A g, as well as outstanding cycling performance with 87.2% retention after 5000 cycles. In this work, we focused on the large specific surface area and suitable electrochemical properties of NiCu(CO)(OH) electrodes with various solvents. As a result, the asymmetric supercapacitor (ASC) using the NiCu(CO)(OH) electrode prepared with 50 ml of DI water as the solvent as the positive electrode and graphene as the negative electrode, exhibited an energy density of 26.7 W h kg at a power density of 2534 W kg, and excellent cycling stability with 91.3% retention after 5000 cycles. The NiCu(CO)(OH)//graphene ASC could turn on an LED light and demonstrated better electrical performance than most previously reported nickel- and copper-based carbonate hydroxide ASCs. In addition, in the present scenario where many nanoscale studies are conducted, a method of controlling the nanostructure of a material through facile solvent control will be of great help to many researchers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt02427aDOI Listing

Publication Analysis

Top Keywords

water solvent
12
facile solvent
8
solvent control
8
positive electrode
8
high-performance supercapacitors
8
electrode prepared
8
prepared water
8
surface area
8
electrical performance
8
retention 5000
8

Similar Publications

This study focused on fabricating a cellulose aerogel for oil spill clean-up, using common reed () as the cellulose source. The process involved isolating cellulose from reed via traditional Kraft pulping, considering the effects of key factors on the isolated cellulose content. After a two-stage HP bleaching sequence, the highest cellulose content achieved was 27.

View Article and Find Full Text PDF

The ethanol extract of as an ovicidal agent against .

Narra J

December 2024

Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Dengue hemorrhagic fever (DHF) is a major health concern in tropical and subtropical countries. Indonesia has DHF cases perennially every year. On the other hand, Indonesia is abundant with seaweed ), which can be found across its seashore.

View Article and Find Full Text PDF

Micelle-enabled bromination of α-oxo ketene dithioacetals: mild and scalable approach enzymatic catalysis.

Org Biomol Chem

January 2025

Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

The bromination of α-oxo ketene dithioacetals using KBr/HO, catalyzed by vanadium chloroperoxidase (VCPO), has been successfully demonstrated. A comparative study of enzymatic processes "on water" "in water", using 2 wt% of the surfactant TPGS-750-M revealed that the in-water protocol not only provides higher yields but also accommodates a broader substrate scope. This bromination method in an aqueous micellar medium enabled the preparation of brominated α-oxo ketene dithioacetals in fair to excellent yields (23 examples).

View Article and Find Full Text PDF

Preparation of ethynylsulfonamides and study of their reactivity with nucleophilic amino acids.

Org Biomol Chem

January 2025

Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-2-1 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.

The development of covalent drugs, particularly those utilizing Michael acceptors, has garnered significant attention in recent pharmaceutical research due to the ability of such molecules to irreversibly inhibit protein function. This study focusses on the synthesis and evaluation of ethynylsulfonamides, which are predicted to have superior covalent binding ability, metabolic stability, and water solubility compared to traditional amides. We developed a straightforward synthesis method for ethynylsulfonamides and comprehensively evaluated the covalent binding abilities of these compounds using NMR with various nucleophilic amino acids in different solvents.

View Article and Find Full Text PDF

Drug Delivery Applications of Hydrophobic Deep Eutectic Solvent-in-Water Nanoemulsions: A Comparative Analysis of Ultrasound Emulsification and Membrane-Assisted Nanoemulsification.

ACS Appl Mater Interfaces

January 2025

Department of Chemical Engineering and Environmental Technology, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D, 50018 Zaragoza, Spain.

The emergence of green chemistry and engineering principles to enforce sustainability aspects has ensured the prevalence of green solvents and green processes. Our study addresses this quest by exploring drug delivery applications of hydrophobic deep eutectic solvents (DESs) which are alternative green solvents. Initially, this work showcases the hydrophobic drug solubilization capabilities of a natural hydrophobic DES, menthol, and decanoic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!