A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lamellar Lyotropic Liquid Crystal Superior to Micellar Solution for Proton Conduction in an Aqueous Solution of 1-Tetradecyl-3-methylimidazolium Hydrogen Sulfate. | LitMetric

Humidified perfluorosulfonic acid polymers with a nanoscopic phase-separated morphology are highly proton-conductive materials for fuel cells, yet morphology tuning of the acidic materials for enhanced conduction remains a challenge. Aqueous acidic lyotropic liquid crystals (LLCs) provide a powerful platform to construct well-defined nanostructures for proton conduction. We report an aqueous LLC formed by 1-tetradecyl-3-methylimidazolium hydrogen sulfate, exhibiting a proton conductivity of 210 mS cm at 25 °C, which surpasses that formed by alkylsulfonic acid, thus demonstrating that a mobile acidic anion is more efficient than constrained sulfonic acid functionality to transport protons in LLCs. For an aqueous solution of 1-alkyl-3-methylimidazolium hydrogen sulfate, a lamellar LLC results in higher conductivity than a micellar solution under the same hydration conditions. The peak power density of the fuel cell fabricated from porous membranes filled with the lamellar LLC is four times as high as that filled with the micellar solution. The work offers an efficient way to construct highly proton-conductive LLC materials for fuel cell application.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c13349DOI Listing

Publication Analysis

Top Keywords

micellar solution
12
hydrogen sulfate
12
lyotropic liquid
8
proton conduction
8
aqueous solution
8
1-tetradecyl-3-methylimidazolium hydrogen
8
highly proton-conductive
8
materials fuel
8
lamellar llc
8
fuel cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!