The surface-enhanced Raman spectroscopy (SERS) signal of a reporter on silver nanoparticles can be effectively gained by gradient electric field application. The external electric field initiates the dielectrophoresis of nanoparticles and their electrically induced dipole-dipole interaction. Owing to dielectrophoresis, the nanoparticles are concentrated in the area of high electrical field strength. The induced dipole-dipole interaction leads to additional coagulation of nanoparticles and formation of hotspots. Both dielectrophoresis and induced dipole-dipole interaction increase the number of hotspots, which leads to a SERS signal growth. These two mechanisms of SERS signal amplification are explained by the dielectrophoresis and Derjaguin-Landau-Verwey-Overbeek theories. The benefits of the surface-enhanced Raman spectroscopy in tandem with the gradient electric field are experimentally confirmed using a SERS-active reporter, 4-mercaptophenylboronic acid which has a characteristic peak at Raman shift of 1586 cm, conjugated to silver nanoparticles of 32, 52, 58, and 74 nm in diameter. The SERS signal gain depends on the silver nanoparticle stability, size, and electric field strength. The limit of detection for 4-mPBA in the system under study can be calculated from the concentration plot and equals to 63 nM. The enhancement factor calculated for SERS in tandem with the gradient electric field can reach 10.Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-020-04550-xDOI Listing

Publication Analysis

Top Keywords

electric field
24
gradient electric
16
sers signal
16
surface-enhanced raman
12
raman spectroscopy
12
tandem gradient
12
silver nanoparticles
12
induced dipole-dipole
12
dipole-dipole interaction
12
spectroscopy tandem
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!