Tumors are commonly treated by resection, which usually leads to massive hemorrhage and tumor cell residues, thereby increasing the risk of local recurrence and distant metastasis. Herein, an intelligent 3D-printed poly(lactic-co-glycolic acid), gelatin, and chitosan scaffold loaded with anti-cancer drugs was prepared that showed hemostatic function and good pH sensitivity. Following implantation in wounds, the scaffolds absorbed hemorrhage and cell residues after surgery, and promoted wound healing. In an environment, the scaffold responded to the slightly acidic environment of the tumor to undergo sustained drug release to significantly inhibit the recurrence and growth of the tumor, and reduced drug toxicity, all without causing damage to healthy tissues and with good biocompatibility. The multifunctional intelligent scaffold represents an excellent treatment modality for breast cancer following resection, and provides great potential for efficient cancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482818 | PMC |
http://dx.doi.org/10.7150/thno.47933 | DOI Listing |
Bioact Mater
April 2025
Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Hydrogel-based patches have demonstrated their values in diabetic wounds repair, particularly those intelligent dressings with continuous repair promoting and monitoring capabilities. Here, we propose a type of dual physiological responsive structural color particles for wound repair. The particles are composed of a hyaluronic acid methacryloyl (HAMA)-sodium alginate (Alg) inverse opal scaffold, filled with oxidized dextran (ODex)/quaternized chitosan (QCS) hydrogel.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
January 2025
Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
Protein kinase C (PKC) is a family of serine/threonine kinases, and PKC ligands have the potential to be therapeutic seeds for cancer, Alzheimer's disease, and human immunodeficiency virus infection. However, in addition to desired therapeutic effects, most PKC ligands also exhibit undesirable pro-inflammatory effects. The discovery of new scaffolds for PKC ligands is important for developing less inflammatory PKC ligands, such as bryostatins.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan.
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic strategy for spinal cord injury (SCI). These nanosized vesicles possess unique properties such as low immunogenicity and the ability to cross biological barriers, making them ideal carriers for delivering bioactive molecules to injured tissues. MSC-EVs have been demonstrated to exert multiple beneficial effects in SCI, including reducing inflammation, promoting neuroprotection, and enhancing axonal regeneration.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China.
Corneal injury is prevalent in ophthalmology, with mild cases impacting vision and severe cases potentially resulting in permanent blindness. In clinical practice, standard treatments for corneal injury involve transplantation surgery combined with pharmacological therapy. However, surgical sutures exhibit several limitations, which can be overcome using tissue adhesives.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
Cartilage repair remains a critical challenge in orthopaedic medicine due to the tissue's limited self-healing ability, contributing to degenerative joint conditions such as osteoarthritis (OA). In response, regenerative medicine has developed advanced therapeutic strategies, including cell-based therapies, gene editing, and bioengineered scaffolds, to promote cartilage regeneration and restore joint function. This narrative review aims to explore the latest developments in cartilage repair techniques, focusing on mesenchymal stem cell (MSC) therapy, gene-based interventions, and biomaterial innovations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!