The therapeutic potential of donor-derived mesenchymal stromal cells (MSCs) has been investigated in diverse diseases, including steroid-resistant acute graft versus host disease (SR-aGvHD). However, conventional manufacturing approaches are hampered by challenges with scalability and interdonor variability, and clinical trials have shown inconsistent outcomes. Induced pluripotent stem cells (iPSCs) have the potential to overcome these challenges, due to their capacity for multilineage differentiation and indefinite proliferation. Nonetheless, human clinical trials of iPSC-derived cells have not previously been completed. CYP-001 (iPSC-derived MSCs) is produced using an optimized, good manufacturing practice (GMP)-compliant manufacturing process. We conducted a phase 1, open-label clinical trial (no. NCT02923375) in subjects with SR-aGvHD. Sixteen subjects were screened and sequentially assigned to cohort A or cohort B (n = 8 per group). One subject in cohort B withdrew before receiving CYP-001 and was excluded from analysis. All other subjects received intravenous infusions of CYP-001 on days 0 and 7, at a dose level of either 1 × 10 cells per kg body weight, to a maximum of 1 × 10 cells per infusion (cohort A), or 2 × 10 cells per kg body weight, to a maximum dose of 2 × 10 cells per infusion (cohort B). The primary objective was to assess the safety and tolerability of CYP-001, while the secondary objectives were to evaluate efficacy based on the proportion of participants who showed a complete response (CR), overall response (OR) and overall survival (OS) by days 28/100. CYP-001 was safe and well tolerated. No serious adverse events were assessed as related to CYP-001. OR, CR and OS rates by day 100 were 86.7, 53.3 and 86.7%, respectively. The therapeutic application of iPSC-derived MSCs may now be explored in diverse inflammatory and immune-mediated diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-020-1050-xDOI Listing

Publication Analysis

Top Keywords

mesenchymal stromal
8
cells
8
stromal cells
8
graft versus
8
versus host
8
host disease
8
clinical trials
8
ipsc-derived mscs
8
1 × 10 cells
8
cells body
8

Similar Publications

Olig2 single-colony-derived cranial bone-marrow mesenchymal stem cells achieve improved regeneration in a cuprizone-induced demyelination mouse model.

J Zhejiang Univ Sci B

September 2024

Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China.

Oligodendrocytes are the myelinating cells of the central nervous system. Brain injury and neurodegenerative disease often lead to oligodendrocyte death and subsequent demyelination-related pathological changes, resulting in neurological defects and cognitive impairment (Spaas et al., 2021; Zhang J et al.

View Article and Find Full Text PDF

Introduction: Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Treatments for TBI patients are limited and none has been shown to provide prolonged and long-term neuroprotective or neurorestorative effects. A growing body of evidence suggests a link between TBI-induced neuro-inflammation and neurodegenerative post-traumatic disorders.

View Article and Find Full Text PDF

Inflammation and mechanical force-induced bone remodeling.

Periodontol 2000

December 2024

Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Periodontitis arises from imbalanced host-microbe interactions, leading to dysbiosis and destructive inflammation. The host's innate and adaptive immune responses produce pro-inflammatory mediators that stimulate destructive events, which cause loss of alveolar bone and connective tissue attachment. There is no consensus on the factors that lead to a conversion from gingivitis to periodontitis, but one possibility is the proximity of the inflammation to the bone, which promotes bone resorption and inhibits subsequent bone formation during coupled bone formation.

View Article and Find Full Text PDF

Current perspectives on the dynamic culture of mesenchymal stromal/stem cell spheroids.

Stem Cells Transl Med

December 2024

Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.

Mesenchymal stromal/stem cells (MSCs) are promising candidates for regenerative medicine owing to their self-renewal properties, multilineage differentiation, immunomodulatory effects, and angiogenic potential. MSC spheroids fabricated by 3D culture have recently shown enhanced therapeutic potential. MSC spheroids create a specialized niche with tight cell-cell and cell-extracellular matrix interactions, optimizing their cellular function by mimicking the in vivo environment.

View Article and Find Full Text PDF

Background: Real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a powerful tool for analysing target gene expression in biological samples. To achieve reliable results by RT-qPCR, the most stable reference genes must be selected for proper data normalisation, particularly when comparing cells of different types. We aimed to choose the least variable candidate reference genes among eight housekeeping genes tested within a set of human cancer cell lines (HeLa, MCF-7, SK-UT-1B, A549, A431, SK-BR-3), as well as four lines of normal, non-malignant mesenchymal stromal cells (MSCs) of different origins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!