Recently, three-terminal synaptic devices have attracted considerable attention owing to their nondestructive weight-update behavior, which is attributed to the completely separated terminals for reading and writing. However, the structural limitations of these devices, such as a low array density and complex line design, are predicted to result in low processing speeds and high energy consumption of the entire system. Here, we propose a vertical three-terminal synapse featuring a remote weight update via ion gel, which is also extendable to a crossbar array structure. This synaptic device exhibits excellent synaptic characteristics, which are achieved via precise control of ion penetration onto the vertical channel through the weight-control terminal. Especially, the applicability of the developed vertical organic synapse array to neuromorphic computing is demonstrated using a simple crossbar synapse array. The proposed synaptic device technology is expected to be an important steppingstone to the development of high-performance and high-density neural networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490352 | PMC |
http://dx.doi.org/10.1038/s41467-020-17850-w | DOI Listing |
Sci Total Environ
December 2024
Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; College of Resources and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China.
This study examined the impact of long-term manure organic fertilizer application (3, 8, 13, 18, and 22 years) on soil physicochemical properties, heavy metal (HM) accumulation, and microbial communities. Long-term manure application markedly elevated nutrient levels such as available N, P and K, and organic matter content in surface and soil profile. Total and DTPA-HM content in different vertical profiles increased with the application time.
View Article and Find Full Text PDFPeerJ
December 2024
College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China.
In this study, experiments were conducted on soil samples collected from depths of 0-15 cm, 15-30 cm, and 30-50 cm at the National Long-term Scientific Research Base for the Comprehensive Management of Rocky Desertification in the Wuling Mountains. The aim was to determine the physicochemical indexes and explore the nature and spatial heterogeneity of the soil of the planted mixed forests within the rocky desertification area of the Wuling Mountain. Various analytical methods were employed, including descriptive statistical analysis, correlation analysis, analysis of variance, principal component analysis, spatial interpolation analysis, and kriging interpolation, to fit the optimal model of the semi-variance function of soil physicochemical properties and analyze the model's parameters.
View Article and Find Full Text PDFAdv Mater
December 2024
Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
High contact resistance remains the primary obstacle that hinders further advancements of organic semiconductors (OSCs) in electronic circuits. While significant effort has been directed toward lowering the energy barrier at OSC/metal contact interfaces, approaches toward reducing another major contributor to overall contact resistance - the bulk resistance - have been limited to minimizing the thickness of OSC films. However, the out-of-plane conductivity of OSCs, a critical aspect of bulk resistance, has largely remained unaddressed.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, 211135 Nanjing, China. Electronic address:
Dissolved organic matter (DOM) is pivotal for soil biogeochemical processes, soil fertility, and ecosystem stability. While numerous studies have investigated the impact of fertilization practices on DOM content along soil profiles, variations in DOM chemodiversity and the underlying factors across soil profiles under long-term fertilization regimes remain unclear. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and high-throughput sequencing, this study investigated DOM composition characteristics and microbial community compositions across different soil layers (0-20, 20-40, 40-60, and 60-100 cm) in paddy soil under different long-term fertilization treatments, including Control (no fertilizer), NPK (mineral NPK fertilizer), NPKHS (NPK fertilizer with half straw return), and NPKS (NPK fertilizer with full straw return).
View Article and Find Full Text PDFNanoscale
December 2024
Nanomaterials and Systems Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy Systems, Jeju National University, Jeju-si, Republic of Korea.
Metal-organic frameworks (MOFs) are porous crystalline materials with a metal ion coordinated to a ligand molecule. Recently, MOFs are being explored extensively for energy harvesting triboelectrification. However, the majority of MOFs are brittle and hard to grow, thus leading to poor device stability and flexibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!