There is accumulating evidence that continuous activation of the sympathetic nervous system due to psychosocial stress increases resistance to therapy and accelerates tumor growth via β2-adrenoreceptor signaling (ADRB2). However, the effector mechanisms appear to be specific to tumor type. Here we show that activation of ADRB2 by epinephrine, increased in response to immobilization stress, delays the loss of MCL1 apoptosis regulator (MCL1) protein expression induced by cytotoxic drugs in prostate cancer cells; and thus, increases resistance of prostate cancer xenografts to cytotoxic therapies. The effect of epinephrine on MCL1 protein depended on protein kinase A (PKA) activity, but was independent from androgen receptor expression. Furthermore, elevated blood epinephrine levels correlated positively with an increased MCL1 protein expression in human prostate biopsies. In summary, we demonstrate that stress triggers an androgen-independent antiapoptotic signaling via the ADRB2/PKA/MCL1 pathway in prostate cancer cells. IMPLICATIONS: Presented results justify clinical studies of ADRB2 blockers as therapeutics and of MCL1 protein expression as potential biomarker predicting efficacy of apoptosis-targeting drugs in prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080265PMC
http://dx.doi.org/10.1158/1541-7786.MCR-19-1037DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
mcl1 protein
16
protein expression
12
β2-adrenoreceptor signaling
8
resistance prostate
8
increases resistance
8
drugs prostate
8
cancer cells
8
prostate
6
mcl1
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!