The antigenic peptides processed by β-cells and presented through surface HLA class I molecules are poorly characterized. Each HLA variant (e.g., the most common being HLA-A2 and HLA-A3) carries some peptide-binding specificity. Hence, features that, despite these specificities, remain shared across variants may reveal factors favoring β-cell immunogenicity. Building on our previous description of the HLA-A2/A3 peptidome of β-cells, we analyzed the HLA-A3-restricted peptides targeted by circulating CD8 T cells. Several peptides were recognized by CD8 T cells within a narrow frequency (1-50/10), which was similar in donors with and without type 1 diabetes and harbored variable effector/memory fractions. These epitopes could be classified as conventional peptides or neoepitopes, generated either via peptide -splicing or mRNA splicing (e.g., secretogranin-5 [SCG5]-009). As reported for HLA-A2-restricted peptides, several epitopes originated from β-cell granule proteins (e.g., SCG3, SCG5, and urocortin-3). Similarly, H-2K-restricted CD8 T cells recognizing the murine orthologs of SCG5, urocortin-3, and proconvertase-2 infiltrated the islets of NOD mice and transferred diabetes into NOD/ recipients. The finding of granule proteins targeted in both humans and NOD mice supports their disease relevance and identifies the insulin granule as a rich source of epitopes, possibly reflecting its impaired processing in type 1 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db20-0013DOI Listing

Publication Analysis

Top Keywords

cd8 cells
16
granule proteins
12
nod mice
12
insulin granule
8
proteins targeted
8
humans nod
8
type diabetes
8
scg5 urocortin-3
8
peptides
6
peptides derived
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!