Purpose: Image-guided adaptive brachytherapy (IGABT) recently has shown excellent clinical outcomes with superior local control and less toxicity. For IGABT, T2W (T2-weighted) MRI is the gold standard. However, studies have shown that target delineation with the same results in uncertainties, poor interobserver variabilities, and low conformity indices for high-risk clinical target volume contours. In this study, we investigate the role of diffusion-weighted imaging-derived apparent diffusion coefficient (ADC) maps to aid in IGABT. We also evaluated ADC from the baseline to brachytherapy.
Methods And Materials: Thirty selected patients were enrolled for this study, and two MRIs were taken at diagnosis and before brachytherapy. Patients were divided into two groups, Group 1 being patients with parametrial involvement before external beam radiotherapy and no parametrial involvement before brachytherapy. Group 2 included patients with parametrial involvement before external beam radiotherapy and persistent parametrial involvement before brachytherapy. ADC was measured at the center, edge, and 1 cm from the edge.
Results: The measured ADC increased from diagnosis to brachytherapy, and this increase was more for the patients in Group 1 than in Group 2. The mean TDadc (diagnosis ADC, center), TEadc (tumor edge ADC diagnosis), and T1cmDadc (1 cm from edge at diagnosis) were 0.884, 1.45, and 1.9 × 10 mm/s, respectively. The TBadc (ADC at brachytherapy, center), TEBadc (tumor edge ADC at brachytherapy), and TE1cmBadc (1 cm from edge brachytherapy) were 1.2, 1.8, and 2.3 × 10 mm/s, respectively, p-value <0.00001. No abnormal ADC was present outside the high-risk clinical target volume contours.
Conclusion: MRI-based IGABT using T2W imaging essentially covers all functionally abnormal zones at brachytherapy. Diffusion-weighted imaging, along with ADC maps, should only be used as a supplement for target delineation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brachy.2020.07.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!