A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly sensitive determination of mercury by improved liquid cathode glow discharge with the addition of chemical modifiers. | LitMetric

The sample introduction system of early miniaturized liquid cathode glow discharge (LCGD) was improved, and then LCGD was used as an excitation source of atomic emission spectrometry (AES) for the detection of mercury in water samples. The effects of chemical modifiers, such as ionic surfactants and low molecular weight organic substances, on emission intensities of Hg were investigated. The results showed that the addition of 4% methanol and 0.15% hexadecyltrimethylammonium bromide (CTAB) can enhance the net intensity of Hg about 15.5-fold and 7.7-fold, and the sensitivity (S) of Hg about 15.2-fold and 5.6-fold, respectively. Adding chemical modifiers markedly reduce the interferences from Fe, Co, Cl, Br, and I ions. The limit of detection (LOD) is reduced from 0.35 mg L for no chemical modifier to 0.03 mg L for 4% methanol and 0.05 mg L for 0.15% CTAB. The relative standard deviation (RSD) of Hg with adding 4% methanol, 0.15% CTAB and no chemical modifier is 2.38%, 1.17% and 3.00%, respectively, and the power consumption is below 75 W. All results indicated that the determination of Hg using improved LCGD with the addition of chemical modifiers has high sensitivity, low LOD, well precision and low power consumption. Water samples containing high mercury (10-20 mg L) and low mercury (0.2-5 mg L) can be determined by improved LCGD-AES with no chemical modifier and 4% methanol, respectively. Adding 4% methanol significantly reduces the matrix effects from real water samples. The measurement results of spiked samples using LCGD-AES are largely consistent with the spiked value. In addition, the recoveries of Hg are ranged from 95.7% to 114.8%, suggesting that the measurement results of Hg by LCGD-AES are accurate and reliable. Overall, the improved LCGD-AES with adding chemical modifiers is a promising technique for on-site and real-time monitoring of Hg in water samples because of its portability, lower cost and speed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2020.07.050DOI Listing

Publication Analysis

Top Keywords

chemical modifiers
20
water samples
16
chemical modifier
12
liquid cathode
8
cathode glow
8
glow discharge
8
chemical
8
addition chemical
8
improved lcgd
8
methanol 015%
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!