The threat of organophosphorus pesticide (OPP) residue to food safety and human health has caused widespread concern. In this paper, a sensitive fluorescence sensor for OPP detection was constructed based on the alkaline phosphatase (ALP) -triggered in situ reaction. In this method, ALP catalyses the dephosphorylation of the substrate l-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAP) to generate l-ascorbic acid (AA). AA instantly combines with o-phenylenediamine (OPD) to form 3-(1,2-dihydroxyethyl)furo[3,4-b]quinoxalin-1(3H)-one (DFQ), which contains a quinoxaline core skeleton fluorophore and emits a strong fluorescence intensity at 425 nm. The existence of OPPs inhibits the activity of ALP and the production of AA and DFQ. As a result, the fluorescence intensity obviously decreases. Under optimal conditions, the fluorescence intensity linearly depends on the logarithm of chlorpyrifos concentration over a wide range of 20 pg/mL ∼1000 ng/mL with a detection limit of 15.03 pg/mL (S/N = 3), which is lower than the previously reported values. The sensor with its satisfactory accuracy and precision has been successfully applied to the detection of chlorpyrifos in leeks and celery samples with recoveries of 94.5-106.7% and an inter-assay relative standard deviation (RSD) below 11.51%. OPPs can be semiquantitatively determined by the colour changes in ultraviolet light. The superiority of the sensor is due to its visual simplicity without complex fluorescence labelling procedures and costly instruments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2020.07.048 | DOI Listing |
Lymphat Res Biol
January 2025
Department of Plastic and Reconstructive Surgery, Medical Centre of Postgraduate Education, Warsaw, Poland.
Upper limb lymphedema is the most common complication after breast cancer therapy. Suddenly disturbed lymphatic transport in the affected arm causes tissue fluid accumulation in tissue spaces, limb enlargement, and secondary changes in tissue. Early compression therapy is necessary.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
Gold nanoclusters (Au NCs) protected by molecular ligands represent a new class of second-generation near-infrared (NIR-II) luminescent materials that have been widely studied. However, the photoluminescence efficiencies of most NIR-II emitting Au NCs in aqueous solution are generally lower than 0.2%, and to fully exploit the advantages of AuNCs in the NIR-II region, improving their photoluminescence efficiency has become an urgent need.
View Article and Find Full Text PDFCurr Res Food Sci
January 2025
School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China.
The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)).
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Cardiac Surgery, University of Cincinnati Medical Center, Cincinnati, OH 45202, USA.
Background: The fluorescent dye indocyanine green (ICG) has been used to identify anatomical structures intraoperatively in coronary artery bypass grafting (CABG). This study aimed to evaluate the feasibility of using ICG to assess graft patency and territorial distribution of myocardial reperfusion during CABG.
Methods: Porcine arrested hearts (n = 18) were used to evaluate territorial distribution of native coronary arteries and of a coronary bypass constructed with porcine saphenous vein graft (SVG) using ICG.
Background: CD58 loss has been described as a mechanism of resistance to blinatumomab and chimeric antigen receptor T-cell therapy, functioning as a modulator of response to T-cell activation.
Methods: Using flow cytometry, we evaluated the impact of CD58 mean fluorescence intensity (MFI) on the probability of achieving measurable residual disease (MRD) negativity in patients with B-cell acute lymphoblastic leukemia treated with inotuzumab ozogamicin (InO).
Results: The odds ratio of achieving MRD negativity was 1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!