In real-time quantitative polymerase chain reaction (PCR), the standard curve between threshold cycle and logarithm of template concentration is currently the gold standard for template quantification. The efficacy of this approach is limited by the necessary assumption that all samples are amplified with the same efficiency. To overcome this limitation, a new method has been proposed in this contribution for quantitative PCR with internal standard. Unlike existing methods based upon analysis of amplification profile position, the new method tries to determine the initial quantity of the target template in a sample from the fluorescence spectrum measured at a certain point during its PCR reaction. There is no unrealistic prerequisite (e.g., constant amplification efficiency) for the successful application of the new method. The performance of the new method was evaluated by the quantification of KRAS gene in HepG2 samples. Quantitative results with recovery rates in the range of 91.2-118% were achieved by the new method. It is reasonable to expect that the new method would have a place in real-time quantitative PCR, thanks to its features of no unrealistic prerequisite, sound theoretical basis, good performance, and implementation simplicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2020.121405 | DOI Listing |
Viral Immunol
January 2025
Faculty of Allied Health Sciences, Burapha University, Muang, Thailand.
Chronic hepatitis C virus (HCV) infection poses a major health risk worldwide, with patients susceptible to liver cirrhosis and hepatocellular carcinoma. This study focuses on the development of effective therapeutic strategies for HCV infection through the investigation of immunogenic properties of a DNA construct based on the NS3/4A gene of HCV genotype (g)3a. Gene expression of the mutagenized (mut) NS3/4A target genes was assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis.
View Article and Find Full Text PDFEur Radiol Exp
January 2025
Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Background: We examined chronic gadolinium retention impact on gene expression in the mouse central nervous system (CNS) after injection of linear or macrocyclic gadolinium-based contrast agents (GBCAs).
Methods: From 05/2022 to 07/2023, 36 female mice underwent weekly intraperitoneal injections of gadodiamide (2.5 mmol/kg, linear), gadobutrol (2.
Invest Ophthalmol Vis Sci
January 2025
Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.
Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.
Purpose: Dry eye disease (DED) is a common ocular surface inflammatory disease with a complex pathogenesis. Herein, the role and effect of gasdermin E (GSDME) in DED pathogenesis were explored.
Methods: In vitro, flow cytometry, Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays were used to determine the effects of hyperosmotic stress on pyroptosis, apoptosis, and cell viability in human corneal epithelial cells (HCECs).
J Agric Food Chem
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
() is a major pathogenic bacterium responsible for bacterial foodborne diseases, making its rapid, specific, and accurate detection crucial. In this study, we develop a ratiometric biosensor based on the recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats/CRISPR associated protein 12a (RPA-CRISPR/Cas12a) system and Eu-metal-organic framework (Eu-MOF) fluorescent nanomaterials for the high-sensitivity detection of , combining with RPA for efficient isothermal amplification, this sensor enhances specificity and sensitivity by utilizing the target activation of CRISPR/Cas12a. The Eu-MOF serves a dual function, providing stable red fluorescence as a reference signal and adsorbing FAM-labeled probes for fluorescence quenching, forming a dual-signal system that significantly reduces background interference.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!