Induction of genotoxicity and mutagenic potential of heavy metals in Thai occupational workers.

Mutat Res Genet Toxicol Environ Mutagen

Department of Medical Technology, Faculty of Allied Health Science, Thammasat University, Pathum Thani, Thailand. Electronic address:

Published: November 2020

Heavy metals are widely used in many industries in Thailand and found in the environment. Occupational exposure to heavy metals is often chronic and caused by environmental contaminations, potentially leading to mutations and cancer. Although the genotoxic effects of occupational exposure to multiple heavy metals have been extensively studied, the findings regarding their genotoxicity are conflicting. In this study, we focused on investigating the genotoxic effects of certain heavy metals mixtures, including lead (Pb), copper (Cu), zinc (Zn), and tin (Sn), to which workers are exposed in the manufacturing industry. The cytokinesis-blocked micronucleus (CBMN) assay in peripheral blood lymphocytes was performed, and DNA damage was assessed by measuring tumour-associated protein levels and 8-hydroxy-2'-deoxyguanosine (8-OHdG) generated by oxidative stress that causes cytotoxicity. The occupational exposure group included 110 workers exposed to heavy metal mixtures and 105 matched control subjects. We found statistically significant differences in the blood Pb, Sn, and Cu levels between the exposed workers and the control subjects (p < 0.001). Analysis of micronuclei (MN) in peripheral blood lymphocytes revealed a significantly increased frequency of MN in exposed workers compared with that in control subjects (p<0.05). Non-smoking exposed workers were selected for 8-OHdG formation and mutant p53 tests, and significant differences in the mean plasma 8-OHdG concentration (p < 0.001) were found between the occupational exposure and the control group, but no differences were found in the levels of mutant p53. Thus, chronic exposure to different heavy metals causes genotoxic effects in humans. Furthermore, the CBMN assay and 8-OHdG formation can be used as surrogate biomarkers to identify and monitor groups with higher carcinogenic risk in the early stages of toxicity. In summary, our results indicate that mixtures of heavy metals (Pb, Sn, and Cu) in manufacturing industries pose an elevated health risk due to DNA damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrgentox.2020.503231DOI Listing

Publication Analysis

Top Keywords

heavy metals
20
occupational exposure
12
control subjects
12
genotoxic effects
8
workers exposed
8
peripheral blood
8
blood lymphocytes
8
exposed workers
8
heavy
6
metals
5

Similar Publications

Objective: Heavy metal pollution is one of the more recent problems of environmental degradation caused by rapid industrialization and human activity. The objective of this study was to isolate, screen, and characterize heavy metal-resistant bacteria from solid waste disposal sites.

Methods: In this study, a total of 18 soil samples were randomly selected from mechanical sites, metal workshops, and agricultural land that received wastewater irrigation.

View Article and Find Full Text PDF

Exposure to heavy metals has been associated with affecting children's neurodevelopment, particularly increasing the risk of developing attention-deficit hyperactivity disorder (ADHD). The current exploratory study aims to investigate potential associations between presence of 15 different heavy metals in urine and ADHD. A total of 190 urine samples of participants from clinical and non-clinical population (non-ADHD = 66; ADHD = 124) aged between 6 and 15 years from Barcelona and Tarragona (Spain) were analysed.

View Article and Find Full Text PDF

Background: PARP inhibitors (PARPis) have shown promising effectiveness for ovarian cancer. This network meta-analysis (PROSPERO registration number CRD42024503390) comprehensively evaluated the effectiveness and safety of PARPis in platinum-sensitive recurrent ovarian cancer (PSROC).

Methods: Articles published before January 6, 2024 were obtained from electronic databases.

View Article and Find Full Text PDF

Background: To investigate the antibiofilm effect and mechanism of the silver nanowire (AgNW)-modified glass ionomer cement (GIC) against multi-species oral biofilm, and to examine the mechanical and biochemical properties of this novel GIC material.

Methods: Conventional GIC was incorporated with different concentrations of AgNW and silver nanoparticles (AgNP). Multi-species biofilms of Streptococcus mutans, Streptococcus sobrinus, Lactobacillus fermentum, and Lactobacillus rhamnosus were cultured for 72 h on GIC specimens.

View Article and Find Full Text PDF

Background: The association of plasma metals on the risk of cardiovascular diseases (CVD) in adults with prediabetes remains poorly investigated. To assess the association between plasma metal exposure and the risk of CVD in prediabetic adults in the United States using five plasma metals.

Methods: Five cycles of data (2011-2012, 2013-2014, 2015-2016, and 2017-2018) from the NHANES were adopted in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!