The clinical potential of GDF15 as a "ready-to-feed indicator" for critically ill adults.

Crit Care

Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.

Published: September 2020

Background: Circulating growth-differentiation factor-15 (GDF15), a cellular stress marker, abruptly increases during critical illness, but its later time course remains unclear. GDF15 physiologically controls oral intake by driving aversive responses to nutrition. Early parenteral nutrition (PN) in ICU patients has overall been shown not beneficial. We hypothesized that low GDF15 can identify patients who benefit from early PN, tolerate enteral nutrition (EN), and resume spontaneous oral intake.

Methods: In secondary analyses of the EPaNIC-RCT on timing of PN initiation (early PN versus late PN) and the prospective observational DAS study, we documented the time course of circulating GDF15 in ICU (N = 1128) and 1 week post-ICU (N = 72), compared with healthy subjects (N = 65), and the impact hereon of randomization to early PN versus late PN in propensity score-matched groups (N = 564/group). Interaction between upon-admission GDF15 and randomization for its outcome effects was investigated (N = 4393). Finally, association between GDF15 and EN tolerance in ICU (N = 1383) and oral intake beyond ICU discharge (N = 72) was studied.

Results: GDF15 was elevated throughout ICU stay, similarly in early PN and late PN patients, and remained high beyond ICU discharge (p < 0.0001). Upon-admission GDF15 did not interact with randomization to early PN versus late PN for its outcome effects, but higher GDF15 independently related to worse outcomes (p ≤ 0.002). Lower GDF15 was only weakly related to gastrointestinal tolerance (p < 0.0001) and a steeper drop in GDF15 with more oral intake after ICU discharge (p = 0.05).

Conclusion: In critically ill patients, high GDF15 reflected poor prognosis and may contribute to aversive responses to nutrition. However, the potential of GDF15 as "ready-to-feed indicator" appears limited.

Trial Registration: ClinicalTrials.gov , NCT00512122, registered 31 July 2007, https://www.clinicaltrials.gov/ct2/show/NCT00512122 (EPaNIC trial) and ISRCTN, ISRCTN 98806770, registered 11 November 2014, http://www.isrctn.com/ISRCTN98806770 (DAS trial).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488998PMC
http://dx.doi.org/10.1186/s13054-020-03254-1DOI Listing

Publication Analysis

Top Keywords

gdf15
8
time course
8
oral intake
8
early versus
8
versus late
8
icu discharge
8
icu
6
early
5
clinical potential
4
potential gdf15
4

Similar Publications

The Hormetic Potential of GDF15 in Skeletal Muscle Health and Regeneration: A Comprehensive Systematic Review.

Curr Mol Med

January 2025

Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, FI, Italy.

Background: Growth Differentiation Factor 15 (GDF15) has been described as influencing skeletal physiology. Nevertheless, no systematic appraisal of the effect of GDF15 on skeletal muscle tissues has been developed to the present day.

Objective: The aim of the present work was to review the evidence on the topic.

View Article and Find Full Text PDF

Interdependent roles for growth differentiation factor-15 (GDF15) and LIMS1 in regulating cell migration: Implications for colorectal cancer metastasis.

Biochim Biophys Acta Mol Cell Res

January 2025

Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus. Electronic address:

Colorectal cancer (CRC) ranks second in mortality worldwide while metastasis accounts for most CRC-related deaths. Thus, understanding cell migration, a crucial step in metastasis, is imperative for developing new therapies. Growth Differentiation Factor-15 (GDF15), a member of the Transforming Growth Factor β superfamily, is overexpressed in CRC and promotes metastasis with a so far unknown mechanism.

View Article and Find Full Text PDF

Phthalate exposure is linked to prostate enlargement through sex hormonal changes and oxidative stress. However, its role and action mechanism in prostate cancer remain unclear. This study examined two patient cohorts: 204 patients undergoing prostate biopsy (24 benign and 180 malignancies) and 85 with confirmed prostate cancer receiving robotic-assisted radical prostatectomy.

View Article and Find Full Text PDF

Non-canonical Wnt signaling pathway activated NFATC3 promotes GDF15 expression in MASH: prospective analyses of UK biobank proteomic data.

Hepatol Int

January 2025

National Clinical Research Center for Digestive Disease, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Background: Our previous research demonstrated that growth differentiation factor 15 (GDF15) exhibited superior predictive capability for metabolic dysfunction-associated steatohepatitis (MASH) development with an AUC of 0.86 at 10 years before disease diagnosis. However, the specific pathways and molecular mechanisms associated with GDF15 expression during MASH development remain to be fully investigated in humans.

View Article and Find Full Text PDF

Aims: Early identification of healthy subjects prone to develop cardiac dysfunction may be instrumental to prevention strategies. Our study aimed to evaluate whether circulating levels of growth differentiation factor-15 (GDF-15) could predict adverse changes in echocardiographic indexes of cardiac structure and function in an initially healthy populational familial cohort with a long follow-up (STANISLAS cohort).

Methods And Results: We evaluated 1679 participants (49 ± 14 years, 48% males) included in the fourth visit (V4) of the STANISLAS cohort with available GDF-15 measurements (Olink proteomic analysis) and echocardiographic parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!