The levels of brain-derived neurotrophic factor (BDNF) in the corpus callosum have previously been shown to have a critical impact on oligodendrocyte (OLG) lineage cells during cuprizone-elicited demyelination. In particular, BDNF+/- mice exhibit greater losses in myelin protein levels compared to wild-type mice after cuprizone. To investigate whether OLGs may directly mediate these effects of BDNF during a lesion , we used the cuprizone model of demyelination with inducible conditional male knockout mice to specifically delete the high-affinity tropomyosin receptor kinase B (TrkB) receptor from proteolipid protein + OLGs during cuprizone-elicited demyelination and subsequent remyelination. The loss of TrkB during cuprizone-elicited demyelination results in an increased sensitivity to demyelination as demonstrated by greater deficits in myelin protein levels, greater decreases in numbers of mature OLGs, increased numbers of demyelinated axons, and decreased myelin thickness. When mice are removed from cuprizone, they exhibit a delayed recovery in myelin proteins and myelin. Our data indicate that following a demyelinating lesion, TrkB in OLGs positively regulates myelin protein expression, myelin itself, and remyelination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495938PMC
http://dx.doi.org/10.1177/1759091420957464DOI Listing

Publication Analysis

Top Keywords

cuprizone-elicited demyelination
12
myelin protein
12
tropomyosin receptor
8
receptor kinase
8
lineage cells
8
myelin
8
demyelinating lesion
8
protein levels
8
demyelination
5
kinase expressed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!