Glycogen synthase kinase 3 (GSK3) is a highly conserved kinase present in all eukaryotes and functions as a key regulator of a wide range of physiological and developmental processes. The kinase, known in land plants as GSK3/SHAGGY-like kinase (GSK), is a key player in the brassinosteroid (BR) signaling pathway. The genes, through the BRs, affect diverse developmental processes and modulate responses to environmental factors. In this work, we describe functional analysis of , which is one of the -like orthologs in barley. The RNAi-mediated silencing of the target gene was associated with modified expression of its paralogs , , , and in plants grown in normal and in salt stress conditions. Low nucleotide similarity between the silencing fragment and barley genes and the presence of BR-dependent transcription factors' binding sites in promoter regions of barley and rice genes imply an innate mechanism responsible for co-regulation of the genes. The results of the leaf inclination assay indicated that silencing of and the changes of paralogs enhanced the BR-dependent signaling in the plants. The strongest phenotype of transgenic lines with downregulated and paralogs had greater biomass of the seedlings grown in normal conditions and salt stress as well as elevated kernel weight of plants grown in normal conditions. Both traits showed a strong negative correlation with the transcript level of the target gene and the paralogs. The characteristics of barley lines with silenced expression of are compatible with the expected phenotypes of plants with enhanced BR signaling. The results show that manipulation of the GSK-encoding genes provides data to explore their biological functions and confirm it as a feasible strategy to generate plants with improved agricultural traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554974 | PMC |
http://dx.doi.org/10.3390/ijms21186616 | DOI Listing |
Physiol Plant
January 2025
Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
Soil salinization adversely impacts plant and soil health. While amendment with chemicals is not sustainable, the application of bioinoculants suffers from competition with indigenous microbes. Hence, microbiome-based rhizosphere engineering, focussing on acclimatization of rhizosphere microbiome under selection pressure to facilitate plant growth, exhibits promise.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary.
Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China.
Introduction: Melatonin significantly enhances the tolerance of plants to biotic and abiotic stress, and plays an important role in plant resistance to salt stress. However, its role and molecular mechanisms in eggplant salt stress resistance have been rarely reported. In previous studies, we experimentally demonstrated that melatonin can enhance the salt stress resistance of eggplants.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.
View Article and Find Full Text PDFJ Plant Physiol
January 2025
School of Life Sciences, Qinghai Normal University, Xining, 810008, China.
Rheum tanguticum, an endemic species from the Qinghai-Xizang Plateau, is a significant perennial and medicinal plant recognized for its robust resistance to abiotic stresses, including drought, cold, and salinity. To advance the understanding of stress-response mechanisms in R. tanguticum, this study aimed to establish a reliable set of housekeeping genes as references for normalizing RT-qPCR gene expression analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!