Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To solve high-temperature-induced hazards in mines, heat-insulating materials were prepared by utilising basalt fibres and high-strength ceramsite combined with cementing materials. Through orthogonal tests and data analyses, the optimal combination of the heat-insulating materials doped with basalt fibres was determined as ABC, that is, doping with 45% basalt fibres, a length of the basalt fibres of 6 mm, and doping with 20% ceramsite. The performance indices corresponding to the optimal comprehensive combination of the heat-insulating materials doped with basalt fibres included a density of 1200 kg/m, thermal conductivity of 0.151 W/(mK), compressive strength of 9.7 MPa, flexural strength of 3.6 MPa, and a water-seepage depth of 25.4 mm. Numerical simulations verified that the materials presented favourable thermal insulation performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570068 | PMC |
http://dx.doi.org/10.3390/polym12092057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!