Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unnatural nucleic acids are promising materials to expand genetic information beyond the natural bases. During replication, substrate nucleotide incorporation should be strictly controlled for optimal base pairing with template strand bases. Base-pairing interactions occur via hydrogen bonding and base stacking, which could be perturbed by the chemical environment. Although unnatural nucleobases and sugar moieties have undergone extensive structural improvement for intended polymerization, the chemical environmental effect on the reaction is less understood. In this study, we investigated how molecular crowding could affect native DNA polymerization along various templates comprising unnatural nucleobases and sugars. Under non-crowding conditions, the preferred incorporation efficiency of pyrimidine deoxynucleotide triphosphates (dNTPs) by the Klenow fragment (KF) was generally high with low fidelity, whereas that of purine dNTPs was the opposite. However, under crowding conditions, the efficiency remained almost unchanged with varying preferences in each case. These results suggest that hydrogen bonding and base-stacking interactions could be perturbed by crowding conditions in the bulk solution and polymerase active center during transient base pairing before polymerization. This study highlights that unintended dNTP incorporation against unnatural nucleosides could be differentiated in cases of intracellular reactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571040 | PMC |
http://dx.doi.org/10.3390/molecules25184120 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!