A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Molecular Crowding on DNA Polymerase Reactions along Unnatural DNA Templates. | LitMetric

Effect of Molecular Crowding on DNA Polymerase Reactions along Unnatural DNA Templates.

Molecules

Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.

Published: September 2020

Unnatural nucleic acids are promising materials to expand genetic information beyond the natural bases. During replication, substrate nucleotide incorporation should be strictly controlled for optimal base pairing with template strand bases. Base-pairing interactions occur via hydrogen bonding and base stacking, which could be perturbed by the chemical environment. Although unnatural nucleobases and sugar moieties have undergone extensive structural improvement for intended polymerization, the chemical environmental effect on the reaction is less understood. In this study, we investigated how molecular crowding could affect native DNA polymerization along various templates comprising unnatural nucleobases and sugars. Under non-crowding conditions, the preferred incorporation efficiency of pyrimidine deoxynucleotide triphosphates (dNTPs) by the Klenow fragment (KF) was generally high with low fidelity, whereas that of purine dNTPs was the opposite. However, under crowding conditions, the efficiency remained almost unchanged with varying preferences in each case. These results suggest that hydrogen bonding and base-stacking interactions could be perturbed by crowding conditions in the bulk solution and polymerase active center during transient base pairing before polymerization. This study highlights that unintended dNTP incorporation against unnatural nucleosides could be differentiated in cases of intracellular reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571040PMC
http://dx.doi.org/10.3390/molecules25184120DOI Listing

Publication Analysis

Top Keywords

molecular crowding
8
base pairing
8
hydrogen bonding
8
unnatural nucleobases
8
crowding conditions
8
unnatural
5
crowding dna
4
dna polymerase
4
polymerase reactions
4
reactions unnatural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!