In order to simultaneously improve the remediation capability of Cd contaminated water and soil, hydroxy iron-ABsep (HyFe/ABsep) was synthesized by a two-step modified (acid-base composite treatment, and hydroxy group was by using NaOH and Fe (NO)·9HO). Results showed that HyFe/ABsep had developed pores and a rougher surface morphology, and the salt-soluble ion content was increased, surface-loaded iron species was mainly composed of FeOOH. Adsorption process of Cd by HyFe/ABsep conformed best to the preudo-second-order model and Redlich-Paterson models, respectively. The behavior over a whole range of adsorption was consistent with chemical adsorption being the rate-controlling step and the theoretical maximum adsorption capacity obtained for the HyFe/ABsep was 220.9 mg·g at 298 K, which was 4.87 times than Sep. HyFe/ABsep also had a more excellent passivation effect on available Cd in soil, being 36.83%-48.46% under the treatments of 0.5%-4% HyFe/ABsep, The structure and morphology of HyFe/ABsep were characterized through SEM-EDS, TEM, FTIR, XRD and XPS indicated that the mainly mechanisms of Cd sorption may include precipitates, ion exchange and complexation of active silanol groups. Therefore, HyFe/ABsep can employ as an effective agent for immobilization remediation of Cd contaminated water and soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.140009DOI Listing

Publication Analysis

Top Keywords

contaminated water
12
water soil
12
hyfe/absep
9
immobilization remediation
8
remediation contaminated
8
soil hydroxy
8
performance mechanisms
4
mechanisms immobilization
4
soil
4
hydroxy ferric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!